Spring 2001

Name

Student ID number

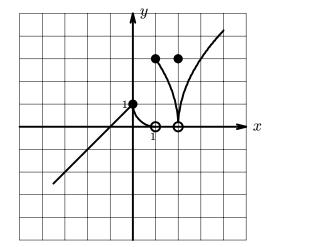
Lecturer

Recitation Instructor

Time of Recitation Class

Instructions:

- 1. This package contains 14 problems, each worth 7 points, for a total of 100 points (that includes 2 bonus points for coming).
- 2. Please supply <u>all</u> information requested above and on the mark–sense sheet.
- 3. Work only in the space provided, or on the backside of the pages. Mark your answers clearly on the mark–sense sheet.
- 4. No books, notes, or calculator, please.


Spring 2001

- 1. Let f be a function defined on $(-\infty, \infty)$. Which is (are) true?
- (I.) f is continuous at a if $\lim_{x \to a} f(x) = f(a)$.
- (II.) f is continuous at a if $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$. A. Only I.
- (III.) If f is differentiable, then f is continuous.
-

B. Only II.

- C. Only I and III.
- D. Only I and II.
- E. Only II and III.

2. The numbers where the function sketched below is discontinuous are

- A. 0, 1, 2
 B. 1, 2
 C. 1, 3
 D. 2, 3
 - E. 0, 2

Spring 2001

3. The horizontal asymptote of the function $f(x) = \frac{8x + 6x^3}{12x^2 - 2x^3}$ is the line

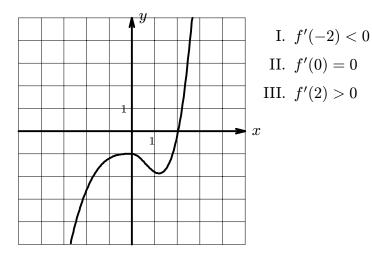
A.
$$y = -3$$

B. $y = \frac{2}{3}$
C. $y = \frac{1}{2}$
D. $y = 0$

E. No horizontal asymptote exists.

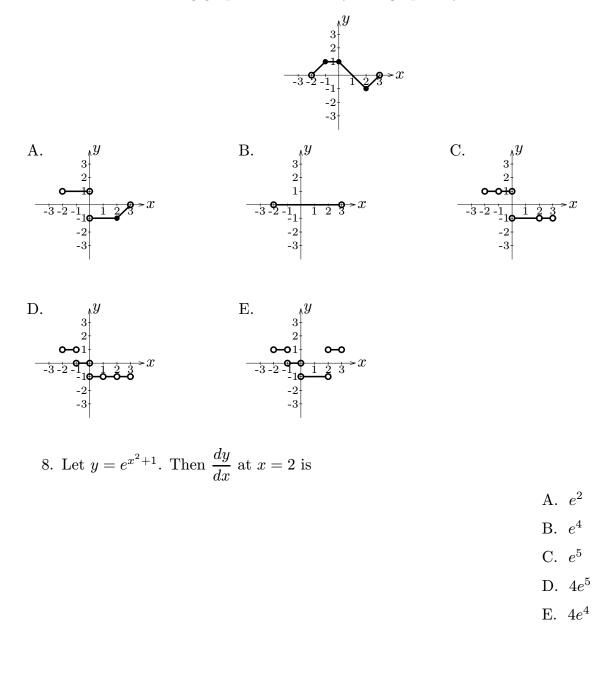
4.
$$\lim_{x \to \infty} \left(\sqrt{2x^2 + 4x} - \sqrt{2x^2 - 4x} \right) =$$

- A. 0B. ∞C. 4
- D. $\sqrt{2}$
- E. $2\sqrt{2}$


- A. Only I and II.
- B. Only II and III.
- C. Only II.
 - D. All are true.
 - E. None are true.

- 6. If the tangent line to y = f(x) at (1, 2) passes through the point (3, 2), then
 - A. f(1) = 2, f'(3) = 2B. f(2) = 1, f'(3) = 2C. f(1) = 2, f'(1) = 0D. f(1) = 3, f'(1) = 2
 - E. f is not differentiable at (1, 2).

Spring 2001


5. If f is given by this graph, which of the statements I, II and III is (are) true?

MA 161/161E EXAM 2

Spring 2001

7. Given the following graph of a function f, the graph of f' would look most like

Spring 2001

9. Let
$$f(x) = x^3 \cos\left(\frac{\pi x}{2}\right)$$
. Then $f'(1) =$

A.
$$-\frac{\pi}{2}$$

B. $3 - \frac{\pi}{2}$
C. $\frac{3\pi}{2}$
D. -1
E. π

10. Given
$$f(x) = \frac{x-1}{x+1}$$
, then $f'(x) =$

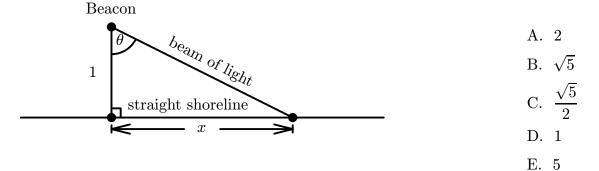
A.
$$\frac{2}{(x+1)^2}$$

B.
$$\frac{2x}{(x+1)^2}$$

C.
$$\frac{2}{x+1}$$

D.
$$\frac{-2x}{x+1}$$

E.
$$\frac{-2}{(x+1)^2}$$


Spring 2001

11. If
$$f(x) = \frac{x^2}{g(x)}$$
, where $g(2) = \sqrt{3}$ and $f'(2) = 2$, then $g'(2)$ is
A. $\frac{3 - \sqrt{3}}{2}$
B. $\sqrt{3} - \frac{3}{2}$
C. $\frac{3\sqrt{3}}{2}$
D. $\frac{-3\sqrt{3}}{2}$
E. cannot be determined

12. Given $f(t) = \sqrt[3]{t^2} + 2\sqrt{t^3}, f'(t) =$

A.
$$\frac{3}{2\sqrt[3]{t^2}} + \sqrt{t}$$

B.
$$\frac{2}{3\sqrt[3]{t^2}} + \sqrt{t}$$

C.
$$\frac{2}{3\sqrt[3]{t}} + 2\sqrt{t}$$

D.
$$\frac{2}{3\sqrt[3]{t}} + 3\sqrt{t}$$

E.
$$\frac{3}{2\sqrt[3]{t}} + 3\sqrt{t}$$

13. A rotating beacon of light is located 1 km from a straight shoreline. See the figure below. What is the rate of change of x with repect to θ (in km/rad) at x = 2 km?

14. If
$$y = (\tan(x^4 + x))^3$$
, then $\frac{dy}{dx}$ at $x = 1$ is

- A. $3(\tan^2 2)(\sec^2 2)$
- B. $5(\tan^2 2)(\sec^2 2)$
- C. $10(\tan^2 2)(\sec^2 2)$
- D. $15(\tan^2 2)(\sec^2 2)$
- E. $20(\tan^2 2)(\sec^2 2)$