1. A ladder 10 feet long is leaning against a wall. The foot of the ladder is being pulled away from the wall at 3 feet per second. How fast, in feet per second, is the top of the ladder sliding down the wall when the foot of the ladder is 8 feet from the wall?
A. 1
B. 2
C. 3
D. 4
E. 5
2. A spherical tank has radius equal to 10 feet ($=120$ inches). Use differentials to estimate, in cubic inches, the amount of paint needed to cover the surface with a layer $\frac{1}{100}$ of an inch thick. $\left(V=\frac{4}{3} \pi r^{3}\right)$.
A. 288π
B. 480π
C. 576π
D. 640π
E. 960π
3. Find the absolute minimum of the function

$$
f(x)=4 x^{3}-15 x^{2}+12 x+7
$$

on the closed interval $[0,3]$.
A. 0
B. 1
C. 3
D. 5
E. 7
4. How many real roots does the equation $x^{7}+x+1=0$ have?
A. 1
B. 2
C. 3
D. 5
E. 7
5. Find the largest interval on which the function $f(x)=x \sin x+\cos x, 0 \leq x \leq \pi$, is increasing.
A. $(0, \pi)$
B. $\left(0, \frac{\pi}{2}\right)$
C. $\left(\frac{\pi}{2}, \pi\right)$
D. $\left(0, \frac{\pi}{3}\right)$
E. $\left(\frac{\pi}{3}, \frac{5 \pi}{3}\right)$
6. What is the length of the largest interval on which the function $f(x)=x^{3}-3 x^{2}-9 x$ is decreasing?
A. 1
B. 2
C. 3
D. 4
E. ∞
7. On what interval is the graph of the function

$$
f(x)=1-\frac{2}{x}+\frac{1}{x^{2}}
$$

A. $\left(\frac{3}{2}, \infty\right)$
B. $\left(1, \frac{3}{2}\right)$
concave downward?
C. $(-\infty, 0)$
D. $(0,1)$
E. $(1, \infty)$
8. $\lim _{x \rightarrow \infty} \frac{(\ln x)^{3}}{x^{2}}=$
A. 0
B. 1
C. $\frac{3}{2}$
D. $\frac{9}{4}$
E. ∞
9. Given the following information about limits, select the graph that could be the graph of $y=f(x)$.

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=0, \quad \quad \lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=\infty
$$

$\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)=-\infty$
A.

B.

D.

E.

10. The function $f(x)=x^{4}-3 x^{3}+3 x^{2}-x$ has critical numbers $c=\frac{1}{4}, 1$; indeed $f^{\prime}(x)=(4 x-1)(x-1)^{2}$. At these critical numbers f has
A. a local max. at $\frac{1}{4}$, a local min. at 1
B. a local max. at 1 , a local min. at $\frac{1}{4}$
C. a local max. at 1 , neither a local max. nor a local min. at $\frac{1}{4}$
D. a local min. at $\frac{1}{4}$, neither a local max. nor a local min. at 1
E. neither a local max. nor a local min. at either $\frac{1}{4}$ or 1
11. Find the maximum value of the function $\frac{x^{2}+2 x-4}{x^{2}}$.
A. $\frac{1}{4}$
B. $\frac{9}{4}$
C. $\frac{7}{4}$
D. $\frac{3}{4}$
E. $\frac{5}{4}$
12. A rectangular cardboard box of $32 \mathrm{in}^{3}$ volume with a square base and an open top is to be constructed. Neglecting waste, find the minimum area of cardboard needed.
A. 54 in 2
B. $48 \mathrm{in}^{2}$
C. 46 in 2
D. $42 \mathrm{in}^{2}$
E. $40 \mathrm{in}^{2}$
13. Given the graph of $y=f^{\prime}(x)$ below, select a graph which could be the graph of $y=f(x)$.

C.

E.

14. If $f^{\prime \prime}(x)=12 x^{2}+2, f(0)=2$ and $f^{\prime}(0)=3$, find $f(1)$.
A. 3
B. 4
C. 5
D. 6
E. 7

