1. $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+3 x}-x\right)=$
A. 0
B. $\frac{2}{3}$
C. $\frac{3}{2}$
D. 3
E. ∞
2. If $f(x)=x \cos (x)$, then $f^{\prime \prime}\left(\frac{\pi}{4}\right)=$
A. $\frac{1}{\sqrt{2}}$
B. $-\frac{\pi}{4}$
C. $\frac{\pi}{4}-\sqrt{2}$
D. $\frac{\pi}{4}(1-\sqrt{2})$
E. $-\frac{1}{\sqrt{2}}\left(\frac{\pi}{4}+2\right)$
3. If $f(x)=\frac{x}{\sin x}$, then $f^{\prime}\left(\frac{\pi}{4}\right)=$
A. $1-\frac{\pi}{2}$
B. $\sqrt{2}\left(1-\frac{\pi}{4}\right)$
C. $\sqrt{2}\left(1+\frac{\pi}{4}\right)$
D. $\sqrt{2}\left(1+\frac{\pi}{2}\right)$
E. $1+\frac{\pi}{4}$
4. Let $g(x)=f(f(x))$ and $f(1)=2, f(2)=-1, f^{\prime}(2)=7, f^{\prime}(1)=5, f^{\prime}(-1)=4$, $f^{\prime}(4)=9, f^{\prime}(7)=3$. Then $g^{\prime}(1)=$
A. 35
B. 63
C. 180
D. 189
E. 243
5. If $f(x)=\sqrt{x+\sqrt{x}}$, then $f^{\prime}(1)=$
A. $\frac{1}{2 \sqrt{2}}$
B. $\frac{1}{\sqrt{2}}$
C. $\sqrt{2}$
D. $2 \sqrt{2}$
E. $\frac{3}{4 \sqrt{2}}$
6. If $x^{2}-x y+y^{3}=14$ then $\frac{d y}{d x}=$
A. $-\frac{2 x y}{x+3 y^{2}}$
B. $-\frac{3 x^{2}+y}{2 x-y}$
C. $\frac{y-2 x}{3 y^{2}-x}$
D. $\frac{x+y}{x^{2}+2 y}$
E. $\frac{x y}{x^{2}-y^{2}}$
7. The function $f(x)$ has derivative $f^{\prime}(x)=x(x+1)^{3}(x-1)^{2}$. Consider the following statements
I. f has a local maximum at $x=-1$
II. f has a local minimum at $x=-1$
III. f has a local maximum at $x=0$
IV. f has a local minimum at $x=0$
V. f has a local maximum at $x=1$
VI. f has a local minimum at $x=1$
A. I, III, VI are true
B. I and IV are true, V and VI are false
C. I and V are true, III and VI are false
D. III and VI are true, I and II are false
E. I, IV and VI are true
8. Find the absolute maximum of the function $f(x)=x^{3}-x^{2}-x$ on the interval $-10 \leq x \leq 1$.
A. $-\frac{2}{9}$
B. $\frac{5}{27}$
C. -1
D. $\frac{7}{27}$
E. $\frac{2}{9}$
9. What is the length of the longest interval on which the function $f(x)=\frac{x}{x^{2}+1}$ is increasing?
A. 0
B. 1
C. 2
D. 4
E. ∞
10. Determine where the function $f(x)=x+\frac{1}{x^{2}}$ is concave upward.
A. $(-\infty, 0)$ and $(0, \infty)$
B. $(-1,0)$
C. $(0, \infty)$
D. $(0,1)$
E. nowhere
11. Given the function $f(x)=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$, consider the following statements
I. $y=1$ is a horizontal asymptote of f
II. $y=-1$ is a horizontal asymptote of f
III. $x=0$ is a vertical asymptote of f
A. I, II, III are false
B. I is true, II and III are false
C. I and II are true, III is false
D. I and III are true, II is false
E. I, II and III are true
12. Consider the statements
I. $\lim _{x \rightarrow 0^{+}} \ln |x|=-\infty$
II. $\lim _{x \rightarrow 0^{-}} \ln |x|=\infty$
A. I, II, III are false
III. $\lim _{x \rightarrow-\infty} \ln |x|=-\infty$
B. I is true, II and III are false
C. I and II are true, III is false
D. I and III are true, II is false
E. I, II and III are true
13. $\lim _{x \rightarrow \infty} \cos \left(\frac{1}{x}\right)=$
A. -1
B. 0
C. 1
D. $-\infty$
E. does not exist
14. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=$
A. 0
B. $\frac{1}{2}$
C. 1
D. 2
E. ∞
15. A colony of bacteria, undergoing exponential growth, starts with 200 bacteria. One hour later it contains 400 bacteria. How many hours does it take to reach 2000 bacteria?
A. 5
B. $\ln 1600$
C. $\ln 200$
D. $\frac{\ln 10}{\ln 2}$
E. $\ln 10$
16. $\sin \left(\tan ^{-1} x\right)=$
A. $\frac{1}{1+x^{2}}$
B. $\sqrt{1-x^{2}}$
C. $\frac{1-x^{2}}{1+x^{2}}$
D. $\frac{x}{\sqrt{1+x^{2}}}$
E. $1+x^{2}$
17. If $f(a)=b$ and $f^{\prime}(a)=c$, use differentials to approximate $f\left(a+\frac{1}{2}\right)-f(a)$.
A. $c-b$
B. $\frac{c}{2}$
C. b
D. $\frac{b}{2 c}$
E. $b c$
18. If $f^{\prime \prime}(x)=20 x^{3}-6 x+2, f^{\prime}(1)=2$ and $f(1)=4$, then $f(-1)=$
A. -1
B. 0
C. 2
D. 4
E. 8
19. $\frac{d}{d x} \int_{1}^{x} \sinh \left(t^{2}\right) d t=$
A. $\sinh (x)$
B. $\sinh \left(x^{2}\right)$
C. $2 x \cosh \left(x^{2}\right)$
D. $2 x \sinh \left(x^{2}\right)$
E. $\cosh (x)$
20. Let $F(x)=\int_{0}^{x^{2}} \sin \left(t^{2}\right) d t$. Consider the following statements
I. $F(0)=0$
II. $F(0)<F(1)$
III. F is increasing for all values of x
IV. $F(-1)=-F(1)$
A. I, II, III, IV are true
B. I, II, III are true, IV is false
C. I, II are true, III, IV are false
D. I is true, II, III, IV are false
E. I, II, III, IV are false
21. $\int \frac{x}{1+4 x^{2}} d x=$
A. $\frac{x^{2}}{1+4 x^{2}}+C$
B. $\frac{1}{2\left(1+4 x^{2}\right)^{2}}+C$
C. $\frac{1}{1+4 x^{2}}+C$
D. $\frac{1}{4} \ln \left(1+4 x^{2}\right)+C$
E. $\frac{1}{8} \ln \left(1+4 x^{2}\right)+C$
22. $\int_{1}^{2}\left(1+3 x^{2}+x^{3}\right) d x=$
A. $11 \frac{3}{4}$
B. $32 \frac{3}{4}$
C. 42
D. 57
E. 83
23. $\int_{1}^{2}\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right) d x=$
A. $-\frac{1}{4}$
B. $\frac{3}{2}$
C. $\ln 2+\frac{3}{2}$
D. $\ln 2-\frac{1}{2}$
E. $\ln 2+1$
24. The length of a rectangle is decreasing at a rate of 1 foot per second, but the area remains constant. At what rate, in feet per second, is the rectangle's width increasing when its length is 10 feet and its width is 5 feet?
A. $\frac{1}{10}$
B. $\frac{1}{5}$
C. $\frac{1}{4}$
D. $\frac{1}{2}$
E. 1
25. Find the shortest distance from the point $(1,4)$ to the parabola $y^{2}=2 x$.
A. $\sqrt{6}$
B. $\sqrt{5}$
C. 2
D. $\sqrt{3}$
E. $\sqrt{2}$
