1. The distance of the point $(2,1,3)$ to the $x y$ plane is
A. $\sqrt{5}$
B. $\sqrt{10}$
C. $\sqrt{13}$
D. 1
E. 3
2. If $(2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}) \times(4 \mathbf{i}+2 \mathbf{j}-6 \mathbf{k})=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}$ then $c_{1}=$
A. 0
B. 1
C. -2
D. 4
E. -8
3. The area between the curves $y=\frac{\cos x}{2}$ and $y=\frac{\sin x}{2}, 0 \leq x \leq \frac{\pi}{2}$ is
A. 0
B. 1
C. $\frac{\pi}{4}$
D. $\sqrt{2}-1$
E. $\frac{\sqrt{3}}{2}+1$
4. A solid lies between the planes $z=1$ and $z=3$. If we intersect it with a plane parallel to the $x y$ plane, at distance z to this latter, the cross section is a circle of radius \sqrt{z}, $1 \leq z \leq 3$. Find the volume of the solid.
A. π
B. 2π
C. 3π
D. 4π
E. 6π
5. The region between the curves $y=\frac{1}{x^{2}+x}, y=0, x=1$, and $x=2$ is revolved about the y axis. The volume of the solid generated is
A. $\frac{3 \pi}{5}$
B. $\pi \ln 2$
C. $2 \pi \ln \frac{3}{2}$
D. $\frac{5 \pi}{6}$
E. $\frac{5 \pi \ln 3}{\ln 2}$
6. It takes 3 J of work to stretch a spring by 5 cm beyond its natural length. How much work is needed to stretch the same spring by 10 cm (beyond natural length)?
A. 12 J
B. 9 J
C. 8 J
D. 6 J
E. 4 J
7. $\int_{0}^{\infty} x e^{-2 x} d x=$
A. $\frac{1}{4}$
B. $\frac{1}{e}$
C. 1
D. 2
E. e
8. $\int_{0}^{\pi} 2 \sin ^{2} x d x=$
A. 0
B. $\frac{1}{4}$
C. 1
D. $\frac{\pi}{2}$
E. π
9. Evaluation of $\int \frac{\sqrt{4+x^{2}}}{x} d x$ leads to the following integral:
A. $2 \int \sin ^{3} \theta d \theta$
B. $2 \int \frac{\sec ^{3} \theta}{\tan \theta} d \theta$
C. $\int \frac{d \theta}{\cos ^{2} \theta}$
D. $\frac{1}{2} \int \tan ^{2} \theta d \theta$
E. $2 \int \sec \theta \tan ^{2} \theta d \theta$
10. The partial fraction decomposition of $\frac{x+1}{x^{3}-2 x^{2}+x}$ is of the form
A. $\frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}$
B. $\frac{A}{x^{3}}+\frac{B}{x^{2}}+\frac{C}{x}$
C. $\frac{A}{x^{2}+1}+\frac{B x+C}{x^{2}}$
D. $\frac{A}{x^{2}}+\frac{B}{x}+\frac{C}{x-1}$
E. $\frac{A x+B}{x^{2}+1}+\frac{C}{x}$
11. The improper integrals I. $\int_{2}^{\infty} \frac{d x}{x^{2}}$ and II. $\int_{0}^{\sqrt{2}} \frac{d x}{\sqrt{x}}$
A. both converge
B. only I. converges
C. only II. converges
D. neither converges
E. none of the above is true
12. Which is/are true?
I. If $\sum_{n=1}^{\infty} a_{n}$ absolutely converges then $\lim _{n \rightarrow \infty} a_{n}=0$.
II. If $\sum_{n=1}^{\infty} a_{n}$ absolutely converges then $\sum_{n=1}^{\infty} a_{n}$ converges.
III. $\int_{1}^{\infty} \frac{d x}{x^{2}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
A. only I. is true
B. only II. is true
C. only I. and II are true
D. only II. and III. are true
E. All three are true
13. $\lim _{k \rightarrow \infty} \frac{2 \sqrt[3]{k}+k^{2}}{3 \sqrt{k}+k^{3}}=$
A. 0
B. $\frac{2}{3}$
C. 1
D. $\frac{3}{2}$
E. ∞
14. The series $\sum_{n=3}^{\infty} \frac{1}{n^{3 / 2} \ln n}$
A. converges by the comparison test, using $\sum_{n=3}^{\infty} \frac{1}{n^{3 / 2}}$
B. converges by the root test
C. diverges by the ratio test
D. diverges by the comparison test, using $\sum_{n=3}^{\infty} \frac{1}{n^{3 / 2}}$
E. diverges by the limit comparison test, using $\sum_{n=3}^{\infty} \frac{1}{n^{3 / 2}}$
15. If the ratio test is used for the series $\sum_{n=1}^{\infty} \frac{2^{n} n!}{(2 n)!}$ then $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ equals
A. 0
B. $\frac{1}{2}$
C. 1
D. 2
E. ∞
16. Which is/are conditionally convergent?
I. $\sum_{1}^{\infty} \frac{(-1)^{n}}{n+2}$
II. $\sum_{1}^{\infty} \frac{(-1)^{n} n}{n+3}$
III. $\sum_{1}^{\infty} \frac{(-1)^{n}}{2^{n}+1}$
A. only I and II
B. only I and III
C. only I
D. only II and III
E. only III
17. The interval of convergence of $\sum_{k=0}^{\infty} \frac{(k+1) x^{k}}{2^{k}}$ is
A. $\left[-\frac{1}{2}, \frac{1}{2}\right]$
B. $\left(-\frac{1}{2}, \frac{1}{2}\right)$
C. $[-2,2]$
D. $[-2,2)$
E. $(-2,2)$
18. The first three terms of the power series of $\frac{x}{1-2 x^{2}}$ are
A. $2 x-4 x^{2}-8 x^{3}$
B. $x+2 x^{3}+4 x^{5}$
C. $x-2 x^{3}+4 x^{5}$
D. $2 x^{3}-4 x^{5}+8 x^{7}$
E. $2 x+2 x^{3}+2 x^{5}$
19. The Maclaurin series of $\sqrt{1+2 x}$ is
A. $1+x-\frac{x^{2}}{4} \pm \ldots$
B. $1+\frac{x}{2}-\frac{x^{2}}{8} \pm \ldots$
C. $1+x-\frac{x^{2}}{2} \pm \ldots$
D. $1+x-x^{2} \pm \ldots$
E. $1+\frac{x}{2}-\frac{x^{2}}{4} \pm \ldots$
20. The parametric equations $x=1+4 t^{2}, y=1+2 t$ can be rewritten as the Cartesian equation
A. $x=2+2 y+y^{2}$
B. $x-2 y=1$
C. $x+2 y=2$
D. $x=2-2 y+y^{2}$
E. $x=1+y^{2}$
21. Find the tangent to the curve $x=2-t, y=t-t^{2}$ at the point where $t=2$.
A. $y=-3 x+2$
B. $y=-x+1$
C. $y=-x-2$
D. $y=-3 x-1$
E. $y=3 x-2$
22. The length of the curve $x=\frac{2 t^{3}}{3}, y=\frac{t^{4}}{4}-\frac{t^{2}}{2}, 1 \leq t \leq 2$, is
A. $\frac{7}{4}$
B. $\frac{9}{4}$
C. $\frac{21}{4}$
D. 2
E. 3
23. Which curve is described by the polar equation $r=\frac{1}{2}+\sin \theta$?
24. The area of one loop of the curve $r=\cos 4 \theta$ is
A. $\frac{\pi}{16}$
B. $\frac{\pi}{8}$
C. $\frac{\pi}{16}+\frac{\sqrt{2}}{16}$
D. $\frac{\pi}{8}+\frac{\sqrt{2}}{16}$
E. $\frac{\pi}{32}$
25. The asymptotes of the hyperbola $4 x^{2}-4 x-y^{2}=3$ are
A. $y=1 \pm 2 x$
B. $y=\frac{1}{2} \pm \frac{x}{2}$
C. $y=\frac{3}{2} \pm \frac{x}{2}$
D. $y= \pm(2 x-1)$
E. $y= \pm \frac{x-2}{2}$
