MA 162	Exam 3	Spring 2000
NAME		
STUDENT ID		
REC. INSTR.	REC. TIME	
INSTRUCTOR		

INSTRUCTIONS:

- 1. Make sure that you have all 7 test pages.
- 2. Fill in the information requested above and on the answer sheet.
- 3. Mark the letter of your response for each question on the mark-sense answer sheet.
- 4. There are 11 problems worth 9 points each.
- 5. No books or notes or calculators may be used.

Some infinite series:

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$
$$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$
$$(1+x)^s = \sum_{n=0}^{\infty} {s \choose n} x^n$$

1. For which x does the series
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n^2 3^{n+1}}$$
 converge?

Exam 3

A.
$$-\frac{1}{3} < x < \frac{1}{3}$$

B. $\frac{1}{3} \le x \le \frac{1}{3}$
C. $-3 \le x < 3$
D. $-3 < x \le 3$
E. $-3 \le x \le 3$

Spring 2000

2. If the power series of
$$f(x)$$
 is $\sum_{n=1}^{\infty} \frac{2^{n-1}x^n}{n+2}$, what is $f^{(4)}(0)$?

A. $\frac{2}{9}$ B. $\frac{4}{3}$ C. 32 D. $\frac{1}{3}$ E. $\frac{16}{3}$

MA 162

Exam 3

3. Find the first three nonzero terms for the power series of $f(x) = \frac{x}{1+3x^2}$.

A.
$$x - 3x^3 + 9x^5$$

B. $2x + 9x^3 + 81x^5$
C. $\frac{1}{3}x - \frac{1}{9}x^2 - \frac{1}{27}x^3$
D. $\frac{1}{3}x - \frac{1}{9}x^3 + \frac{1}{27}x^5$
E. $1 - 3x^2 + 9x^4$

4. Find the first three terms of the power series for f(x) = 1

$$f(x) = \frac{1}{\sqrt{1+2x}}.$$

A.
$$1 - \frac{x}{2} + \frac{3x^2}{8}$$

B. $1 + x - \frac{x^2}{2}$
C. $1 + \frac{x}{2} - \frac{x^2}{8}$
D. $1 - x + \frac{3x^2}{2}$
E. $1 - x - 3x^2$

Exam 3

5. Find the Taylor polynomial $p_3(x)$ about a = 1 for the function $f(x) = x^4 - 3x^2 + x + 1$.

A.
$$1 + (x - 1) - 2(x - 1)^2$$

B. $-(x-1) + 6(x-1) + 24(x-1)^3$
C. $1 + (x - 1) - 4(x - 1)^2$
D. $-(x-1) + 3(x-1)^2 + 4(x-1)^3$
E. $-(x-1) + 3(x-1)^2 + 8(x-1)^3$

MA 162

Exam 3

7. An object is moving in the plane. If its position at time t is $(1 - \cos^2 t, \sin 2t)$, then its velocity when $t = \frac{\pi}{4}$ is

A.
$$\frac{\sqrt{5}}{2}$$

B. $\sqrt{\frac{3}{2}}$
C. $\frac{1}{2}$
D. $\frac{\sqrt{2}}{2}$
E. 1

8. The length of the curve
$$x = \frac{t^3}{3} - t$$
, $y = t^2$, $1 \le t \le 2$, is
A. $\frac{10}{3}$
B. $\frac{14}{3}$
C. $\frac{16}{5}$
D. $\frac{19}{5}$
E. 4

MA 162 Exam 3 Spring 2000 9. If the polar coordinates of a point are $\left(2, \frac{2\pi}{3}\right)$, then its Cartesian coordinates are A. $(\sqrt{3}, 2\sqrt{3})$ B. $(-\sqrt{3}, 2)$ C. $(-1, \sqrt{3})$ D. $\left(\frac{1}{2}, \frac{3}{2}\right)$

E.
$$\left(1, -\frac{\sqrt{3}}{2}\right)$$

10. If the polar equation of a curve is $2r\cos\theta = \tan\theta$, what is its Cartesian equation?

A.
$$x^{2} + y = 1$$

B. $2x^{2}y^{2} = 1$
C. $xy = y^{2} + 1$
D. $2x^{2}y = 1$
E. $y = 2x^{2}$

D.

÷