MA 162

.

NAME		

STUDENT ID ___

SECTION NUMBE	R	LECTUREF
---------------	---	----------

INSTRUCTIONS:

- 1. Make sure you have all 12 test pages.
- 2. Fill in the information requested above and on the mark-sense sheet.
- 3. Mark your answers on the mark-sense sheet and show work in this booklet.
- 4. There are 22 problems, worth 9 points each.
- 5. No books or notes or calculators may be used.
- 6. Please, show your work. It may matter in borderline cases.
- 7. Have a good summer.

Formulae you may or may not find useful:

$$pr_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}||^{2}}\mathbf{a}$$

$$\int \sin^{n} x \, dx = -\frac{1}{n} \sin^{n-1} x \, \cos \, x + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$

$$\int \cos^{n} x \, dx = \frac{1}{n} \cos^{n-1} x \sin \, x + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$

$$\int \sec x \, dx = \ln|\sec \, x + \tan \, x| + C$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{n}}{n}$$

$$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1}$$

$$(1+x)^{s} = \sum_{n=0}^{\infty} {s \choose n} x^{n}$$

 $\tan 2\theta = \frac{B}{A-C}$

 $x = X \cos \theta - Y \sin \theta, \ y = X \sin \theta + Y \cos \theta.$

MA 162	Final Exam	May 2000	Page 2/12
1. The vector Then $v_1 =$	$\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ has len	gth 3 and the same directi	on as $4\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$.
		А.	3

•

.

A. 3
B. 2
C. 1
D. 0
E. -2

2. You have to push your broken car 50 meters, by exerting a force of 200 Newtons, at angle $\pi/6$ with respect to the road. How much work will you do on the car?

- A. $10,000\sqrt{3}$ Nm
- B. 10,000 Nm
- C. $5,000\sqrt{3}$ Nm
- D. 5,000 Nm
- E. none of the above

.

.

3. A vector perpendicular to both $\mathbf{i} + 2\mathbf{j}$ and $\mathbf{j} + 2\mathbf{k}$ is

 $\begin{array}{ll} A. & 2{\bf i}-{\bf j}+4{\bf k} \\ B. & {\bf i}+4{\bf j}+2{\bf k} \\ C. & 4{\bf i}+{\bf j}-2{\bf k} \\ D. & 2{\bf i}-4{\bf j}-{\bf k} \\ E. & 4{\bf i}-2{\bf j}+{\bf k} \end{array}$

4. $\lim_{x \to 1^+} \ln x \ln(\ln x) =$

A. 0 B. 1 C. eD. ∞ E. $-\infty$

.

÷

5.
$$\int_{0}^{1} (x-1) e^{x/2} dx =$$

A. $2\sqrt{e}$ B. 0 C. $6-4\sqrt{e}$ D. $\sqrt{e}-2$ E. 1

6. In computing $\int \sin^{-2} x \cos^3 x dx$ which of the following steps will be used?

- A. integrate by parts
- B. do partial fractions
- C. substitute $u = \sin x$
- D. substitute $u = \cos x$
- E. substitute $u = \sec x$

MA 162	Final Exam	May 2000		Page 5/12
7. The partial	fraction expansion of the fu	nction $\frac{x^3+2}{x^2-1}$ will be of f	orm	$B_m + C$

•

A.
$$\frac{A}{x^2 - 1} + \frac{Bx + C}{x^3 + 1}$$

B.
$$x + \frac{A}{x - 1} + \frac{B}{x + 1}$$

C.
$$x^3 + \frac{A}{x - 1} + \frac{B}{x + 1}$$

D.
$$\frac{A}{x - 1} + \frac{B}{x + 1}$$

E.
$$\frac{3x}{2} + \frac{Ax + B}{x^2 - 1}$$

8.
$$\int_0^2 \frac{dx}{(4+x^2)^{3/2}} =$$

A. $\frac{\sqrt{2}}{2}$
B. $\frac{\sqrt{2}}{8}$
C. $\frac{1}{D}$
D. $\frac{\pi}{4}$
E. $\frac{\pi}{8}$

MA 162

.

.

Final Exam

9. The base of a solid is an isosceles right triangle, with legs of length 3. The cross sections perpendicular to one leg are squares. What is the volume of the solid?

А.	6
В.	$9\sqrt{2}$
C.	9
D.	$\frac{27}{2}$
E.	$\frac{27}{\sqrt{2}}$

10. Two kids are sitting on opposite sides of a seesaw, both 1 ft from the axis of revolution. One kid weighs 10 lbs, the other 100 lbs. How far from the axis should a third kid, also weighing 10 lbs, sit to achieve equilibrium?

A.	6 ft
B.	8 ft
C.	9 ft
D.	10 ft
E.	11 ft

•

·

11.
$$\lim_{k \to \infty} \frac{2\ln k}{\sqrt{k+1}} =$$

A. 2 B. $\frac{1}{2}$ C. $\frac{1}{4}$ D. 0

E. 1

A. $\frac{9}{8}$ B. $\frac{3}{4}$ C. $\frac{9}{4}$ D. $\frac{3}{2}$ E. 3

.

13. Which of the following statements is/are true?

I.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 converges;
II. $\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$ converges by the limit comparison test with $\sum_{n=1}^{\infty} \frac{1}{2^n}$;
III. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1}$ converges absolutely.

- A. Only I
- B. Only II and III
- C. Only III
- D. Only II
- E. All three are true.

14. For what positive values of d does
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^d+1}}$$
 converge?

- A. $0 < d \leq 1$
- B. $1 < d < \infty$
- C. $2 < d < \infty$
- ${\rm D.} \quad \frac{1}{2} < d < \infty$
- E. $\overline{0} < d < \infty$

16. The Taylor series of the function $\frac{x^2}{1+2x^3}$ is

.

- A. $1 x^2 + 2x^3 + \dots$
- B. $x^2 2x^3 + 2x^4 + \dots$
- C. $x 2x^3 + 4x^5 + \dots$
- D. $x^2 2x^5 + 4x^8 + \dots$
- E. $2x^3 4x^5 + 8x^7 + \dots$

Page 9/12

- 18. If a particle travels along the path $x = t^2 1$, $y = 2t^3 5t^2$, what is its velocity at time t = 2?
 - A. $5\sqrt{3}$ B. 8 C. $4\sqrt{2}$ D. 4 E. $2\sqrt{6}$

MA 162	Final Exam	May 2000	Page 11/
19. Find the area of t	he region surrounded by the	e curve $r = \sqrt{1 + cc}$	$\overline{\partial s \theta}$.
		A.	$\frac{\pi}{2}$
		B.	π
		C.	4π
		D.	$rac{4\pi}{2}+1$
		E.	$\pi^2 + 2$

20. The equation $r = 2\cos\theta - 4\sin\theta$ describes a circle. What is its center?

.

Α.	(-1, 2)
B.	$(\frac{1}{2}, -1)$
C.	(2, 4)
D.	(2, -4)
E.	(1,-2)

·

MA 162	Final Exam	May 2000]	Page 12/12
21. Find the foci of the	e ellipse $x^2 - 4x + 4y^2 - 8y$	+4=0.		

A. $(2, 1 \pm \sqrt{5})$ B. $(-2, \pm \sqrt{3}, -1)$ C. $(\pm \sqrt{3}, 0)$ D. $(0, \pm \sqrt{3})$ E. $(2 \pm \sqrt{3}, 1)$

