#### Math 265 Linear Algebra

#### Final Exam

Spring 2001

Student Name (print):

Student ID:

Circle the name of your instructor (with the time of your class):

Ban

De la Cruz (9:00)

De la Cruz (10:30)

Corless

Feng

Gottlieb (9:00)

Gottlieb (1:30)

Krushchev (10:30)

Krushchev (11:30)

Matsuki (1:30)

Matsuki (2:30)

Pascovici

Walther

Włodarczyk (9:00)

Włodarczyk (10:30)

Do not write below this line.

Please be neat and show all work.

Write each answer in the provided box.

Use the back of the sheets and the last 3 pages for extra scratch space.

Return this entire booklet to your instructor.

No books. No notes. No calculators.

| Problem # | Max pts. | Earned points |
|-----------|----------|---------------|
| 1         | 20       |               |
| 2         | 8        |               |
| 3         | 8        |               |
| 4         | 8        |               |
| 5         | 8        |               |
| 6         | 8        |               |
| 7         | 8        |               |
| 8         | 8        |               |
| 9         | 8        |               |
| 10        | 8        |               |
| 11        | 8        |               |
| Section I | . 100    |               |

| 12          | 10  |  |
|-------------|-----|--|
| 13          | 10  |  |
| 14          | 10  |  |
| Section II  | 30  |  |
| 15          | 20  |  |
| 16          | 15  |  |
| 17          | 15  |  |
| 18          | 20  |  |
| Section III | 70  |  |
| TOTAL       | 200 |  |

# Section I: Short problems

No partial credit on this part, but show all your work anyway. It might help you if you come close to a borderline. Please be neat. Write your answer in the provided box.

1. It is given that  $A = \begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$ ,  $\mathbf{rref}(A) = \begin{bmatrix} 1 & 0 & -3 & 0 & 5 \\ 0 & 1 & 2 & 0 & -3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$  and

$$\mathbf{rref}(A^T) = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & -5 \ 0 & 0 & 1 & 2 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}.$$

(a) Find the rank of A.



(b) Find a basis for the null space of A.



(c) Find a basis for the column space of A. We require that you choose the vectors for the basis from the column vectors of A.



(d) Find a basis for the row space of A. We require that you choose the vectors for the basis from the row vectors of A.



2. Determine the value(s) of a so that the following linear system has no solution.

$$\begin{cases} x_1 + 2x_2 + x_3 = a \\ x_1 + x_2 + ax_3 = 1 \\ 3x_1 + 4x_2 + (a^2 - 2)x_3 = 1. \end{cases}$$

| <br> |      |   |
|------|------|---|
|      | <br> |   |
|      |      |   |
|      |      | í |
|      |      |   |
|      |      | 1 |
|      |      | 1 |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |

3. Find the standard matrix for the linear transformation  $L: \mathbb{R}^3 \to \mathbb{R}^2$  such that

$$L\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\0\end{bmatrix}, L\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\3\end{bmatrix}, L\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\-2\end{bmatrix}.$$



4. Determine the value(s) of a so that the line whose parametric equations are given by

$$\begin{cases} x = -3 + t \\ y = 2 - t \\ z = 1 + at \end{cases}$$

is parallel to the plane

$$3x - 5y + z + 3 = 0.$$





**6.** Compute the inverse of the matrix  $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ .



7. E is a 3  $\times$  3 matrix of the form

$$E = \begin{bmatrix} 1 & 8 & 3 \\ x & y & z \\ -3 & 7 & 2 \end{bmatrix}.$$

Given det(E) = 5, compute the determinant of the following matrix

$$F = \begin{bmatrix} x & y & z \\ 1 & 8 & 3 \\ -3 + 4x & 7 + 4y & 2 + 4z \end{bmatrix}$$



**8.** Find the matrix G such that

$$adj(G) = \begin{bmatrix} 2 & 4 \\ -5 & 7 \end{bmatrix}.$$



**9.** Find the dimension of the subspace  $V = span\{v_1, v_2, v_3, v_4\}$  in  $\mathbb{R}^3$  where

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, v_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$



10. Find the projection  $\operatorname{Proj}_{W} v$  of the vector  $v = \begin{bmatrix} 7 \\ 0 \\ 1 \end{bmatrix}$  onto the subspace W spanned by

$$\left\{v_1 = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, v_2 = \begin{bmatrix} -1\\1\\1 \end{bmatrix}\right\}.$$



11. We have a subspace W in  $\mathbb{R}^4$  spanned by the following three linearly independent vectors

$$\left\{ u_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 0 \end{bmatrix}, u_3 = \begin{bmatrix} 3 \\ -3 \\ 0 \\ -2 \end{bmatrix} \right\}.$$

Find an orthonormal basis of W.



### Section II: Multiple choice problems

For Problems 12 through 15, circle only one (the correct) answer for each part. No partial credit.

- 12. Let A be a  $3 \times 3$  matrix with det(A) = 0. Determine if each of the following statements is true or false.
  - (a) Ax = 0 has a nontrivial solution.

True False

(b) Ax = b has at least one solution for every b.

True False

(c) For every  $3 \times 3$  matrix B, we have  $\det(A + B) = \det(B)$ .

True False

(d) For every  $3 \times 3$  matrix B, we have det(AB) = 0.

True False

(e) There is a vector **b** in  $\mathbb{R}^3$  such that  $rank([A \ \mathbf{b}]) > rank(A)$ .

True False

- 13. For each of the following sets, determine if it is a vector (sub)space:
  - (a) The set of all vectors  $(x_1, x_2, x_3, x_4)$  in  $\mathbb{R}^4$  with the property  $2x_1 x_2 = 0, 3x_3 x_4 = 0$ ;

Yes No

(b) The set of all vectors  $(x_1, x_2, x_3)$  in  $\mathbb{R}^3$  with the property  $x_1 \geq 0, x_2 \geq 0, x_3 \geq 0$ ;

Yes No

(c) The set of all vectors  $(x_1, x_2, x_3, x_4)$  in  $\mathbb{R}^4$  with the property  $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1$ ;

Yes No

(d) The set of all vectors of the form (a+b-1, 2a+3c-1, b-c, a+b+c+2) in  $\mathbb{R}^4$  where a, b and c are arbitrary real numbers;

Yes No

(e) The set of all solutions to the linear system of differential equations  $\frac{d\mathbf{x}}{dt} = A\mathbf{x}$  where  $A = \begin{bmatrix} 5 & -4 \\ 1 & 1 \end{bmatrix}$ ;

Yes No

14. For the problems (a), (b) and (c), determine if the given set of vectors is linearly independent or linearly dependent:

(a) 
$$\left\{ \begin{bmatrix} 2\\-2\\-3 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}$$
; Independent Dependent

(b) 
$$\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\};$$
 Independent Dependent

(c) 
$$\left\{ \begin{bmatrix} 1\\-2\\5 \end{bmatrix}, \begin{bmatrix} 3\\0\\11 \end{bmatrix}, \begin{bmatrix} 4\\4\\5 \end{bmatrix} \right\};$$
 Independent Dependent

For the problems (d) and (e), determine if the given set of vectors spans  $\mathbb{R}^3$ :

(d) 
$$\left\{ \begin{bmatrix} \pi \\ 2\pi \\ -1\pi \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} \right\}$$
; span not span

(e) 
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\};$$
 span not span

# Section III: Multi-Step problems

Show all work (no work - no credit!) and display computing steps. Write clearly.

**15.** Let

$$A = \begin{bmatrix} -15 & 28 \\ -8 & 15 \end{bmatrix}.$$

(a) Find the eigenvalues and compute an eigenvector for each eigenvalue.



(b) Find an invertible matrix P and a diagonal matrix D such that

$$P^{-1}AP = D.$$



(c) Compute  $A^{37}$ .



16. Find the least squares fit line for the points  $\dot{}$ 

$$(-2,1), (-1,3), (0,2), (1,3), (2,1).$$

**17.** Let

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

be the linear system of differential equations where

$$A = \begin{bmatrix} 3 & -5 \\ 5 & 3 \end{bmatrix}.$$

(a) Find the eigenvalues and find an eigenvector for each eigenvalue for A. Note: The eigenvalues are COMPLEX-valued.

| ( <b>b</b> ) | Find | the | general | REAL | solution | to the | linear | system | of diffe | erential | l equat | ions. |  |
|--------------|------|-----|---------|------|----------|--------|--------|--------|----------|----------|---------|-------|--|
|              |      |     |         |      |          |        |        |        |          |          |         |       |  |
|              |      |     |         |      |          |        |        |        |          |          |         |       |  |
|              |      |     |         |      |          |        |        |        |          |          |         |       |  |
|              |      |     |         |      |          |        |        |        |          |          |         |       |  |
|              |      |     |         |      |          |        |        |        |          |          |         |       |  |
|              |      |     |         |      |          |        |        |        |          |          |         |       |  |
|              |      |     |         |      |          |        |        |        |          |          |         |       |  |
|              |      |     |         |      |          |        |        |        |          |          |         |       |  |
|              |      |     |         |      |          |        |        |        |          |          |         |       |  |
|              |      |     |         |      |          |        |        |        |          |          |         |       |  |
|              |      |     |         |      |          |        |        |        |          |          |         |       |  |
|              |      |     |         |      |          |        |        |        |          |          |         |       |  |
|              |      |     |         |      |          |        |        |        |          |          |         |       |  |
|              |      |     |         |      |          |        |        |        |          |          |         |       |  |

**18.** Let

$$\begin{cases} \frac{dx_1}{dt} = 2x_1 + 5x_2 \\ \frac{dx_2}{dt} = 3x_1 + x_2 + 3x_3 \\ \frac{dx_3}{dt} = -x_1 \end{cases}$$
rential equations

be a linear system of differential equations.

(a) Find the eigenvalues and find an eigenvector for each eigenvalue for the coefficient matrix of the linear system of differential equations.

| (b) | Find | the ger | neral so | lution to | the linea | ır system | of differe | ential equ | iations. |  |
|-----|------|---------|----------|-----------|-----------|-----------|------------|------------|----------|--|
|     |      |         |          |           |           |           |            |            |          |  |
|     |      |         |          |           |           |           |            |            |          |  |
|     |      |         |          |           |           |           |            |            |          |  |
|     |      |         |          |           |           |           |            |            |          |  |
|     |      |         |          |           |           |           |            |            |          |  |
|     |      |         |          |           |           |           |            |            |          |  |
|     |      |         |          |           |           |           |            |            |          |  |
|     |      |         |          |           |           |           |            |            |          |  |
|     |      |         |          |           |           |           |            |            |          |  |
|     |      |         |          |           |           |           |            |            |          |  |
|     |      |         |          |           |           |           |            |            |          |  |
|     |      |         |          |           |           |           |            |            |          |  |

| (c) | Find the solution to |            |                 |                |      |  |  |
|-----|----------------------|------------|-----------------|----------------|------|--|--|
|     |                      | $x_1(0)=4$ | $1, x_2(0) = 1$ | $16, x_3(0) =$ | · 0. |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |
|     |                      |            |                 |                |      |  |  |