NAME:

STUDENT ID : _____

INSTRUCTIONS:

- 1. Write your name and student ID number in the space provided above. Also write your name at the top of each page.
- 2. There are 8 problems on 6 pages. You must show sufficient work to justify all answers. Correct answers with inconsistent work may not be given credit. Write your answer in the box provided on each problem.
- 3. No books, notes or calculators are allowed.
- 4. The exam is self-explanatory. Please do not ask the instructor to interpret any of the exam questions.

Page number	:	1	2	3	4	5	6	TOTAL
Possible max.	:	12	24	14	24	14	12	100
Your score	:							

- 1. (6 points each) Find the general solution of the given differential equation.
 - a) y'' + 4y' 21y = 0

Answer Box 1a

$$y(t) =$$

b)
$$y'' + 4y' + 20y = 0$$

Answer Box 1b

$$y(t) =$$

MA 266

Exam 2

Summer 2001

NAME :_____

Place your answers in the spaces provided. You must show work to receive any credit.

 $2.\ (12\ points)$ Solve the following initial value problem.

$$4y''' - 4y'' + y' = 0,$$
 $y(0) = 1,$ $y'(0) = 0,$ $y''(0) = -2$

 $Answer\ Box\ 2$

$$y(t) =$$

3. (12 points) Find the general solution of the following differential equation.

$$y'' - 9y = t - 12e^{3t}$$

 $Answer\ Box\ \mathcal{3}$

$$y(t) =$$

MA 266 Exam 2 Summer 2001

NAME :_____

Place your answers in the spaces provided. You must show work to receive any credit.

4. (14 points) Given that $y_1(t) = t^3$ is a solution of

$$t^2y'' + 2ty' - 12y = 0, \qquad t > 0,$$

use the method of reduction of order to find a second solution y_2 such that y_1 and y_2 will form a fundamental set of solutions of the given differential equation.

Answer Box 4

$$y_2(t) =$$

MA 266

Exam 2

Summer 2001

NAME :_____

Place your answers in the spaces provided. You must show work to receive any credit.

5. (12 points) Consider the following nonhomogeneous differential equation,

$$y'' - \frac{x}{x-1}y' + \frac{1}{x-1}y = \frac{x-1}{x}, \quad y > 1$$

Find a particular solution if $y_1 = x$ and $y_2 = e^x$ are solutions of the corresponding homogeneous equation.

Answer Box 5		

6. (12 points) Determine a suitable form for the particular solution of the given differential equation if the method of undetermined coefficients is to be used. Do not evaluate the constants.

$$y^{iv} - 2y'' + y = te^t + \cos t$$

Answer Box 6

MA 266	Exam 2	Summer 2001
NAME :		
Place your answ	vers in the spaces	provided. You must show work to receive any credit.
by an external f	force of $6\sin 2t$ lb	hed 6 in. by a mass that weighs 8 lb. The system is acted on If the mass is set in motion from its equilibrium position with t , find its position u at any time t . Assume that there is no air

Answer Box 7

 $\mathrm{MA}\ 266$

Exam 2

Summer 2001

NAME :_____

Place your answers in the spaces provided. You must show work to receive any credit.

 $8.\ (12\ points)$ Use the Laplace transform to solve the given initial value problem.

$$y'' - y' - 12y = 0,$$
 $y(0) = 1,$ $y'(0) = 0$

 $Answer\ Box\ 8$

y(t) =

Elementary Laplace Transforms:

f(t)	F(s)
1	$\frac{1}{s}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$\sin at$	$\frac{a}{s^2 + a^2}$
$\cos at$	$\frac{s}{s^2 + a^2}$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2 + b^2}$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+a^2}$