1. Find the solution of the initial value problem $y^{\prime}=2 y-1, y(0)=1$. $\phi(t)=$ \qquad

Find the approximate value of the solution of the initial value problem $y^{\prime}=2 y-1, y(0)=1$, where $t=0.4$ using:
the Euler method (eul) with $h=0.1$ the Euler method (eul) with $h=0.05$ \qquad the Euler method (eul) with $h=0.025$ the improved Euler method (rk2) with $h=0.1$ the Runge-Kutta method (rk4) with $h=0.1$ the solution $\phi(t)$
2. Find the approximate value of the solution of the initial value problem $y^{\prime}=\sqrt{t+y}, y(1)=3$, where $t=2$ using : the Euler method (eul) with $h=0.025$ the Euler method (eul) with $h=0.0125$ \qquad the improved Euler method (rk2) with $h=0.1$ the improved Euler method (rk2) with $h=0.05$
\qquad the Runge-Kutta method (rk4) with $h=0.2$ the Runge-Kutta method (rk4) with $h=0.1$
3. Give reasons why the Euler tangent line method with $h=0.1$ does not give a good approximation of the value of the solution of the initial value problem where $t=1$.
(a) $y^{\prime}=(y+1.25)^{2}, y(0)=0$,
solution $y=\frac{25 t}{4(4-5 t)}$.
\square
(b) $y^{\prime}=\frac{50 t}{64(1-2 y)}, y(0)=0$,
solution $y=\frac{1-\sqrt{1-25 t^{2} / 16}}{2}$.

(c) $y^{\prime}=2(t y)^{1 / 3}, y(0)=0$, solution $y=t^{2}$.

(d) $y^{\prime}=4 e^{-t}-3(1-y), y(0)=0$, solution $y=1-e^{-t}$.
\square

