MA 266 Summer 01 REVIEW 4

SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

You should be able to find the largest interval for which a second order linear initial value problem is guaranteed to have a unique solution.

THEOREM: If p, q and g are continuous in an open interval I and t_{0} is in I, then the initial value problem $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$, has a unique solution in all of the interval I.

The Wronskian of two differentiable functions y_{1} and y_{2} is
$W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{ll}y_{1}(t) & y_{2}(t) \\ y_{1}^{\prime}(t) & y_{2}^{\prime}(t)\end{array}\right|=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)$.
THEOREM: If y_{1} and y_{2} are two solutions of the differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ in some interval I and there is some point t_{0} in I such that $W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0$, then the general solution of the differential equation is $y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$.

THEOREM: If Y is a (particular) solution of the differential equation $\left.{ }^{*}\right) y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)$ and y_{1} and y_{2} are a fundamental set of solutions of the corresponding homogeneous equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, then the general solution of $\left(^{*}\right)$ is $y=c_{1} y_{1}+c_{2} y_{2}+Y$.

SECOND ORDER LINEAR HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS

The differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ has characteristic equation $a r^{2}+b r+c=0$.
(i) If the characteristic equation has real and unequal roots r_{1} and r_{2}, then the differential equation has general solution $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.
(ii) If the characteristic equation has unequal complex roots $\alpha \pm i \beta$, then the differential equation has general solution $y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)$.
(iii) If the characteristic equation has equal real roots $r_{1}=r_{2}$, then the differential equation has general solution $y=c_{1} e^{r_{1} t}+c_{2} t e^{r_{1} t}$.

REDUCTION OF ORDER

If $y_{1}(t)$ is a solution of the differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, the substitution $y(t)=v(t) y_{1}(t)$ leads to the differential equation $y_{1}(t) v^{\prime \prime}+\left(2 y_{1}^{\prime}(t)+p(t) y_{1}(t)\right) v^{\prime}=0$. If $v(t)$ is a solution of the latter differential equation, then $y_{2}(t)=v(t) y_{1}(t)$ is a solution of the original differential equation. If v is not a constant, then the equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ has general solution $y=c_{1} y_{1}+c_{2} y_{2}$.

METHOD OF UNDETERMINED COEFFICIENTS

Consider the linear differential operator $L[y]=a y^{\prime \prime}+b y^{\prime}+c y$, where a, b, and c are constants. Note: "L" stands for "linear". It is NOT the Laplace transform symbol \mathcal{L} used later in the course. Knowledge of the character of $L[y]$ for certain functions y allows us to determine the form of particular solutions of some differential equations of the form $L[y]=g(t)$.

The differential equation $a y^{\prime \prime}+b y^{\prime}+c y=\left(a_{0} t^{n}+a_{1} t^{n-1}+\cdots+a_{n}\right) e^{\alpha t}$ has solution
$Y=t^{s}\left(A_{0} t^{n}+A_{1} t^{n-1}+\cdots+A_{n}\right) e^{\alpha t}$, where s is the number of times α is a root of the characteristic equation $a r^{2}+b r+c=0$.
(First, write $Y=\left(A_{0} t^{n}+A_{1} t^{n-1}+\cdots+A_{n}\right) e^{\alpha t}$, then multiply by a factor of t if the proposed particular solution contains a solution of the homogeneous equation.)

The equations $a y^{\prime \prime}+b y^{\prime}+c y=\left(a_{0} t^{n}+a_{1} t^{n-1}+\cdots+a_{n}\right) e^{\alpha t} \cos (\beta t)$ and $a y^{\prime \prime}+b y^{\prime}+c y=\left(a_{0} t^{n}+a_{1} t^{n-1}+\cdots+a_{n}\right) e^{\alpha t} \sin (\beta t)$ have solutions $Y=t^{s}\left(\left(A_{0} t^{n}+A_{1} t^{n-1}+\cdots+A_{n}\right) e^{\alpha t} \cos (\beta t)+\right.$ $\left.\left(B_{0} t^{n}+B_{1} t^{n-1}+\cdots+B_{n}\right) e^{\alpha t} \sin (\beta t)\right)$,
where s is the number of times $\alpha+i \beta$ is a root of the characteristic equation $a r^{2}+b r+c=0$.
(First, write

$$
\begin{aligned}
& Y=\left(A_{0} t^{n}+A_{1} t^{n-1}+\cdots+A_{n}\right) e^{\alpha t} \cos (\beta t)+ \\
& \quad\left(B_{0} t^{n}+B_{1} t^{n-1}+\cdots+B_{n}\right) e^{\alpha t} \sin (\beta t),
\end{aligned}
$$

then multiply by a factor of t if the proposed particular solution contains a solution of the homogeneous equation.)

MA 266 SPR 01 REVIEW 4 PRACTICE QUESTIONS

1. (a) $L[y]=y^{\prime \prime}-3 y^{\prime}+2 y$. Evaluate $L\left[e^{t}\right], L\left[e^{2 t}\right], L\left[e^{-t}\right]$.
(b) $L[y]=y^{\prime \prime}-4 y^{\prime}+4 y$. Evaluate $L\left[e^{2 t}\right], L\left[t e^{2 t}\right], L\left[t^{2} e^{2 t}\right]$.
(c) $L[y]=y^{\prime \prime}-4 y^{\prime}+5 y$. Evaluate $L\left[e^{2 t} \cos t\right], L\left[e^{2 t} \sin t\right], L[\sin t]$.
2. Suppose that y_{0} is a solution of $t^{2} y^{\prime \prime}+t y^{\prime}+y=t^{2}$ and $L[y]=t^{2} y^{\prime \prime}+t y^{\prime}+y$. Evaluate $L\left[y_{0}+t^{2}-2 t+1\right]$.
3. Find the largest open interval for which the initial value problem $y^{\prime \prime}+\frac{1}{t} y^{\prime}+\frac{1}{t-2} y=\frac{1}{t-3}, y(1)=3, y^{\prime}(1)=2$, has a solution.
4. (a) Show that $y_{1}=t$ and $y_{2}=t^{-1}$ are solutions of the differential equation $t^{2} y^{\prime \prime}+t y^{\prime}-y=0$.
(b) Evaluate the Wronskian $W\left(t, t^{-1}\right)(t)$.
(c) Find the solution of the initial value problem $t^{2} y^{\prime \prime}+t y^{\prime}-y=0, y(1)=2, y^{\prime}(1)=4$.

In Problems 5-7 find the general solution of the homogeneous differential equations in (a) and use the method of undetermined coefficients to find the form of a particular solution of the nonhomogeneous equations in (b) and (c).
5. (a) $y^{\prime \prime}-5 y^{\prime}+6 y=0$
(b) $y^{\prime \prime}-5 y^{\prime}+6 y=t^{2}$
(c) $y^{\prime \prime}-5 y^{\prime}+6 y=e^{2 t}+\cos (3 t)$
6. (a) $y^{\prime \prime}-6 y^{\prime}+9 y=0$
(b) $y^{\prime \prime}-6 y^{\prime}+9 y=t e^{3 t}$
(c) $y^{\prime \prime}-6 y^{\prime}+9 y=e^{t}+\cos (3 t)$
7. (a) $y^{\prime \prime}-2 y^{\prime}+10 y=0$
(b) $y^{\prime \prime}-2 y^{\prime}+10 y=e^{t}+\cos (3 t)$
(c) $y^{\prime \prime}-2 y^{\prime}+10 y=e^{t} \cdot \cos (3 t)$
8. Find the general solution of the differential equation $y^{\prime \prime}-y^{\prime}=4 t$.
9. The differential equation $t^{2} y^{\prime \prime}+t y^{\prime}-y=0$ has solution $y_{1}(t)=t$.
(a) Use the method of reduction of order to find a differential equation satisfied by v, where $y(t)=t v(t)$ is a solution of $t^{2} y^{\prime \prime}+t y^{\prime}-y=0$.
(b) Solve the differential equation in (a) to find a solution of $t^{2} y^{\prime \prime}+t y^{\prime}-y=0$ that is not a constant multiple of y_{1}.
(c) Find the general solution of the differential equation $t^{2} y^{\prime \prime}+t y^{\prime}-y=0$.

MA 266 SPR 01 REVIEW 4 PRACTICE QUESTION ANSWERS

1. (a) $L\left[e^{t}\right]=0, L\left[e^{2 t}\right]=0, L\left[e^{-t}\right]=6 e^{-t}$
(b) $L\left[e^{2 t}\right]=0, L\left[t e^{2 t}\right]=0, L\left[t^{2} e^{2 t}\right]=2 e^{2 t}$
(c) $L\left[e^{2 t} \cos t\right]=0, L\left[e^{2 t} \sin t\right]=0, L[\sin t]=4 \sin t-4 \cos t$
2. $L\left[y_{0}+t^{2}-2 t+1\right]=6 t^{2}-4 t+1$
3. $0<t<2$
4. (b) $W\left(t, t^{-1}\right)(t)=-2 t^{-1}(c) y=3 t-t^{-1}$
5. (a) $y=C_{1} e^{2 t}+C_{2} e^{3 t}$
(b) $y=A t^{2}+B t+C$
(c) $y=A t e^{2 t}+B \cos (3 t)+C \sin (3 t)$
6. (a) $y=C_{1} e^{3 t}+C_{2} t e^{3 t}$
(b) $y=t^{2}(A t+B) e^{3 t}$
(c) $y=A e^{t}+B \cos (3 t)+C \sin (3 t)$
7. (a) $y=\left(C_{1} \cos (3 t)+C_{2} \sin (3 t)\right) e^{t}$
(b) $y=A e^{t}+B \cos (3 t)+C \sin (3 t)$
(c) $y=t(A \cos (3 t)+B \sin (3 t)) e^{t}$
8. $y=C_{1}+C_{2} e^{t}-2 t^{2}-4 t$
9. (a) $t^{3} v^{\prime \prime}+3 t^{2} v^{\prime}=0$
(b) $y=t^{-1}$ or $y=a_{1} t^{-1}+a_{2} t, a_{1} \neq 0$
(c) $y=C_{1} t+C_{2} t^{-1}$
