
An Interpolation Perspective on Modern 
Machine Learning

Sept 2018
Purdue Workshop on Approximation and ML

Mikhail Belkin, Ohio State University,
Department of Computer Science and Engineering, 

Department of Statistics

Collaborators: Siyuan Ma,  Soumik Mandal, Raef Bassily, 
Daniel Hsu, Partha Mitra, Alexander Rakhlin, Alexandre 
Tsybakov



Machine Learning/AI is becoming a backbone 
of commerce and society. 

The fog of war:

What is new and what is important?

Isolate and analyze components.

GoogleLeNet, Szegedy, et al 2014.



Supervised ML

Data 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1. .𝑛𝑛 , 𝑥𝑥𝑖𝑖 ∈ ℝ𝑑𝑑 , 𝑦𝑦𝑖𝑖 ∈ −1,1

Goal: construct 𝑓𝑓:ℝ𝑑𝑑 → ℝ, that “generalizes” to unseen data.

Empirical risk minimization (basis for most algorithms): 

𝑓𝑓∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑓𝑓∈ℋ

1
𝑛𝑛
�𝐿𝐿 𝑓𝑓(𝑥𝑥𝑖𝑖), 𝑦𝑦𝑖𝑖

Optimized using SGD.

…

𝑓𝑓 xi − yi 2, e.g.



Interpolation
Data 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1. .𝑛𝑛 , 𝑥𝑥𝑖𝑖 ∈ ℝ𝑑𝑑 , 𝑦𝑦𝑖𝑖 ∈ −1,1

Interpolation: 𝑓𝑓 𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3 𝑥𝑥4

Zero-loss fitting:
𝑠𝑠𝑖𝑖𝑎𝑎𝑛𝑛(𝑓𝑓 𝑥𝑥𝑖𝑖 ) = 𝑦𝑦𝑖𝑖

1

-1



Accepted wisdom



Who is afraid of over-fitting?

Zero loss classifiers produce near optimal results.

[CIFAR 10, from Understanding deep learning requires rethinking generalization, Zhang, et al, 2017]

Ruslan Salakhutdinov’s tutorial on deep learning (Simons 
Institute, Berkeley, 2017): 

The best way to solve the problem from practical standpoint is 
you build a very big system. If you remove any of these 
regularizations like dropout or L2, basically you want to make 
sure you hit the zero training error. Because if you don't, you 
somehow waste the capacity of the model. 



Theory

From https://www.learnopencv.com/bias-variance-tradeoff-in-machine-learning/



Practice (SGD, kernel machine)

~
~ ~

~

SGD epochs (model complexity)

Interpolation: train error (~10−27)

Interpolation test error

SGD test error

SGD train error



[B., Ma, Mandal, ICML 18]



A new phenomenon?

Interpolated classifiers produce near optimal results.

Deep Neural Networks (Zhang, et al, 17, but also much earlier)

Kernel Machines (our work)

Random Forests (PERT, Cutler, Zhao, 2001)

Adaboost (Schapire, et, al. 1998) 

Not always recognized as such 

(e.g., regularization with very small 𝜆𝜆).



A new phenomenon?

Leo Breiman, 1995 

From Reflections after refereeing papers for NIPS:

 Why don’t heavily parametrized networks overfit the data?

 What is the effective number of parameters?

 When doesn’t backpropagation head for poor local minima?

 When should one stop backpropagation and use the current 
parameters?

We are finally closing on some answers.



Two key questions

1. Why do interpolated classifiers 
generalize?

2. Why interpolate? 



The challenge of interpolation
(approximation/statistics)

 Do we have theory?

 Not much help from existing theory. 

 Interpolated classifiers are robust to label noise.

 Unlikely to understand neural networks until (convex) kernel machines are 
understood.

[B., Ma, Mandal ICML 18]

 Moving forward: provable (near-optimal)  generalization for methods that 
interpolate.

[B., Hsu, Mitra, 18] [B., Rakhlin, Tsybakov, 18]



This talk: the power of interpolation 
(optimization)

 Optimization under interpolation

 Why is SGD so efficient in modern learning?

 Exponential convergence of  mini-batch SGD. 

[Ma, Bassily, B., ICML 18]

 Application: Fast and simple kernel machines for large data.

 Simplicity: no regularization or loss function

 Learning kernels that adapt to GPU.

 Automatic mini-batch/step size selection.

EigenPro 2.0 [Ma, B., NIPS 17, 18]



From https://www.learnopencv.com/bias-variance-tradeoff-in-machine-learning/

~ ~

~ ~

Practice (kernel machine, MNIST)Theory

10−27 training error = interpolation.

Yet near optimal generalization.



Generalization bounds (interpolation)

Basic bound:
VC-dim, fat shattering, Rademacher, Covering numbers, etc…

Expected loss          Empirical loss

𝐸𝐸(𝐿𝐿(𝑓𝑓∗,𝑦𝑦)) ≤
1
𝑛𝑛
�𝐿𝐿 𝑓𝑓∗ 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 + 𝑂𝑂∗

𝑐𝑐
𝑛𝑛

Interpolation

Can such bounds be useful?

Model or function complexity, e.g., VC or 𝑓𝑓 ℋ



Model complexity of interpolation?

Many classical 

results available. 

Margin bounds, 

[Schapire, et al 98], etc.

High complexity, grows 
linearly with data size.

???

Low complexity, does not 
grow with data size.



Two ways:

1. Synthetic data.

2. Add label noise. 

Model complexity grows but Bayes opt. does not change!

Expect overfitting to become severe as model complexity 
grows. 

How to test model complexity?



Robustness to noise

What kind of generalization bound could work here?
(hopefully correct but nontrivial)

0.7 < 𝑂𝑂∗ 𝑐𝑐(𝑛𝑛)
𝑛𝑛

< 0.9

Bayes opt
Bayes opt



0.7 < 𝑂𝑂∗
𝑐𝑐(𝑛𝑛)
𝑛𝑛

< 0.9 𝑛𝑛 ≫ 1

There are no bounds like this!
Not clear whether they can exist mathematically.

e.g., can it be true if 𝑐𝑐 𝑛𝑛 = 𝜙𝜙( 𝑓𝑓 ℋ)?



The challenge of interpolation

 Do we have theory?

 Not much help from existing theory. 

 Interpolated classifiers are robust to label noise.

 Unlikely to understand neural networks until (convex) kernel machines are 
understood.

[B., Ma, Mandal ICML 18]

 Moving forward: provable (near-optimal)  generalization for methods that 
interpolate.

[B., Hsu, Mitra, 18] [B., Rakhlin, Tsybakov, 18]



Theoretical analyses fall short

 VC-dimension/Rademacher complexity/covering bounds. 

 Cannot deal with interpolated classifiers when Bayes 
risk is non-zero. 

 Empirical risk is zero – hard to bound the gap.

 Regularization-type analyses (Tikhonov, early stopping, 
etc.)

 Diverge as 𝜆𝜆 → 0 for fixed 𝑛𝑛.
 Algorithmic stability.

 Does not apply when empirical risk is zero, expected risk non-zero. 

 Classical smoothing methods (i.e., Nadaraya–Watson). 

 Most classical analyses do not support interpolation.

(But Hilbert Regression Scheme [Devroye, et al, 1998], 1-NN, our 
recent results)



A way forward?

1-nearest neighbor classifier is very suggestive.

Interpolating classifier with a non-trivial (sharp!) 
performance guarantee (twice the Bayes risk).  

 No margin assumptions.

 Analysis not based on uniform bounds. 

 Estimate generalization, not the generalization gap. 



Simplicial interpolation

1. Triangulate.

2. Linearly interpolate

3. Threshold

[B., Hsu, Mitra, 18]



1-NN vs simplicial interpolation

1-NN
Simplicial interp.



Nearly Bayes optimal

Theorem: (dimension 𝑑𝑑)

𝐸𝐸 𝐿𝐿 𝑆𝑆𝑆𝑆 < 1 +
1

2𝑑𝑑
× 𝐵𝐵𝑎𝑎𝑦𝑦𝐵𝐵𝑠𝑠 𝑅𝑅𝑖𝑖𝑠𝑠𝑅𝑅

Classical bound:

𝐸𝐸 𝐿𝐿 1𝑁𝑁𝑁𝑁 < 2 × 𝐵𝐵𝑎𝑎𝑦𝑦𝐵𝐵𝑠𝑠 𝑅𝑅𝑖𝑖𝑠𝑠𝑅𝑅

The blessing of dimensionality!

[B., Hsu, Mitra, 18]



Interpolated k-NN schemes

𝑦𝑦 𝑥𝑥 = sign ∑𝑤𝑤 𝑥𝑥, 𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖

Singular kernel, e.g. 𝑤𝑤 𝑥𝑥, 𝑧𝑧 = − ln ||𝑥𝑥 − 𝑧𝑧||
Theorem:

Weighted (interpolated) k-nn schemes with certain singular 
kernels are consistent.

Moreover, statistically optimal!

[B., Hsu, Mitra, 18] [B., Rakhlin, Tsybakov, 18]



This talk: the power of interpolation 
(optimization)

 Optimization under interpolation

 Why is SGD so efficient in modern learning?

 Exponential convergence of  mini-batch SGD. 

[Ma, Bassily, B., ICML 18]

 Application: Fast and simple kernel machines for large data.

 Simplicity: no regularization or loss function

 Learning kernels that adapt to GPU.

 Automatic mini-batch/step size selection.

EigenPro 2.0 [Ma, B., NIPS 17, 18]



Stochastic Gradient Descent

w∗ = argmin
w

𝐿𝐿(𝑤𝑤) = argmin
w

1
𝑛𝑛
�𝐿𝐿𝑖𝑖 𝑤𝑤

SGD Idea: optimize ∑𝐿𝐿𝑖𝑖 𝑤𝑤 , 𝑚𝑚 at a time.

Error after 𝑡𝑡 steps      SGD: 1/t
GD: 𝐵𝐵−𝑡𝑡

All major neural network architectures use SGD. 

Why use SGD?

= 𝑓𝑓w xi − yi 2, e.g.



The Power of Interpolation

Key observation: 

Interpolation 𝑓𝑓𝑤𝑤∗ 𝑥𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖 ⇒ ∀𝑖𝑖 𝐿𝐿𝑖𝑖 𝑤𝑤∗ = 0
Implies exponential convergence.

𝑤𝑤 ⋅ 1 − 1 2 + w ⋅ 1 + 1 2 [non-interpolation]

[SGD oscillates, adaptive step size/slow convergence]

𝑤𝑤1 ⋅ 1 − 1 2 + w2 ⋅ 1 + 1 2 [interpolation]

[fixed step size, exponential convergence]



Exponential convergence of m-SGD

Convex loss function 𝐿𝐿 (𝜆𝜆-smooth, 𝛼𝛼-strongly convex),
𝐿𝐿𝑖𝑖(𝛽𝛽-smooth).
Theorem 1 [exponential convergence of 𝑚𝑚 -SGD]

𝐸𝐸 𝐿𝐿 𝑤𝑤𝑡𝑡+1 ≤
𝜆𝜆
2 1 − 𝜂𝜂∗ 𝑚𝑚 𝛼𝛼 𝑡𝑡 ||𝑤𝑤1 − 𝑤𝑤∗||

𝜂𝜂∗ 𝑚𝑚 =
𝑚𝑚

𝛽𝛽 + 𝜆𝜆(𝑚𝑚 − 1)

[Ma, Bassily, B., ICML 18]

Related work (𝑚𝑚 = 1): [Strohmer, Vershynin 09] [Moulines, Bach, 11] 
[Needell, Srebro, Ward, 14]



Minibatch size?

Theorem 2: Critical size 𝑚𝑚∗ = 𝛽𝛽
𝜆𝜆
[optimal fixed step size]

[1.linear scaling: 𝑚𝑚 ≤ 𝑚𝑚∗] One step 𝑚𝑚-SGD ≈ 𝑚𝑚 steps of 1-SGD

[2. saturation: 𝑚𝑚 ≥ 𝑚𝑚∗] One step 𝑚𝑚-SGD ~ one step of full GD 

𝑂𝑂 𝑛𝑛 computational gain over GD

Convergence per SGD iteration.

𝑚𝑚∗ = 𝛽𝛽
𝜆𝜆
(nearly) data 

independent.  Quadratic 
loss function:

𝑚𝑚∗~
𝑡𝑡𝑎𝑎 𝐻𝐻
𝜆𝜆1(𝐻𝐻)



Why minibatch?

GPU: fast highly parallel matrix x matrix products

 limits algorithms available

Algorithmic requirements: 

matrix x matrix products + 

limited amount of other computation (CPU)

Full parallel minibatch computation 1 ≪ 𝑚𝑚 ≪ 𝑛𝑛
(much larger than 1-SGD, much smaller than full GD)

Nvidia Titan X GPU (from nvidia.com)



Interpolation in modern ML

How do you interpolate? 

Think about a 𝑚𝑚 × 𝑛𝑛 linear system: 𝐴𝐴𝑥𝑥 = 𝑏𝑏. 
Need rank rank 𝐴𝐴 ≥ 𝑛𝑛 (at least as many parameters as equations).

Over-parametrization # parameters ≥ # training data. 

More parameters  easier to interpolate (even non-convex).

From Canziani, et al., 2017. 

Ruslan Salakhutdinov’s tutorial on deep 
learning (Simons Institute, Berkeley, 2017): 

The best way to solve the problem from 
practical standpoint is you build a very big 
system. If you remove any of these 
regularizations like dropout or L2, basically 
you want to make sure you hit the zero 
training error. Because if you don't, you 
somehow waste the capacity of the model. 



SGD in modern ML

Systematic over-parametrization.

# parameters >> # training data

Over-parametrization  interpolation  fast SGD:

SGD 𝑂𝑂 𝑛𝑛 computational gain (𝑛𝑛~105) over GD 
+ GPU implementation ~100 over CPU.

Combined: SGD on GPU ~107 faster than GD on CPU!

We used to do 
that..



This talk: the power of interpolation

 Optimization under interpolation

 Why is SGD so efficient in modern learning?

 Exponential convergence of  mini-batch SGD. 

[Ma, Bassily, B., ICML 18]

 Application: Fast and simple kernel machines for large data.

 Simplicity: no regularization or loss function

 Learning kernels that adapt to GPU.

 Automatic mini-batch/step size selection.

EigenPro 2.0 [Ma, B., NIPS 17, 18]



Kernel machines

ℋ (Reproducing Kernel Hilbert space), 

p.d. kernel 𝐾𝐾 𝑥𝑥, 𝑧𝑧 , (e.g., 𝐾𝐾 𝑥𝑥,𝑦𝑦 = 𝐵𝐵−
𝑥𝑥−𝑦𝑦 2

𝜎𝜎2 )

𝑓𝑓∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛𝑓𝑓∈ℋ,𝑓𝑓 𝑥𝑥𝑖𝑖 =𝑦𝑦𝑖𝑖 𝑓𝑓 ℋ

Representer Theorem (𝐾𝐾 𝑥𝑥, 𝑦𝑦 = 𝐵𝐵−
𝑥𝑥−𝑦𝑦 2

𝜎𝜎2 , for example)

𝑓𝑓∗ 𝑥𝑥 = �
𝑖𝑖

𝛼𝛼𝑖𝑖 𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥 , 𝛼𝛼 = 𝐾𝐾−1𝑦𝑦

Minimum norm interpolation.



Kernel learning 

Beautiful classical 

statistical/mathematical theory 

RKHS Theory [Aronszajn,…, 50s]

Potential functions method [Izerman,…, 60s]

Splines [Parzen, Wahba,…, 1970-80s]

Kernel machines [Vapnik,…, 90s]

Very attractive setting:

 Convex

 Analytically tractable

Can be viewed as a 2-layer neural net.



Kernel Interpolation

No loss functions -- no regularization:

𝐾𝐾 𝛼𝛼∗ = 𝑦𝑦

Direct inversion: cost 𝑛𝑛3 (does not map to GPU).

Gradient descent: 𝛼𝛼(𝑡𝑡) = 𝛼𝛼(𝑡𝑡−1) − 𝜂𝜂 𝐾𝐾𝛼𝛼 𝑡𝑡−1 − 𝑦𝑦
[Richarson, Landweber,…]

Cost 𝑛𝑛2 per iteration. GPU compatible.

How much gain from SGD?



Real data example (Gaussian kernel)

𝑚𝑚 = 1

𝑚𝑚∗ = 8

m= 16

Critical size 𝑚𝑚∗ ≈ 𝛽𝛽 𝐾𝐾
𝜆𝜆1 𝐾𝐾

+ 1 ≈ 8.

SGD acceleration factor over 
GD ~104 (sequential 

computation)

But: parallelization beyond 
𝑚𝑚∗ = 8 has little effect. 



Controlling parallelism

Problem: Parallelization is controlled by 
1
𝜆𝜆1
. (cf. 

convergence of gradient descent)

Idea: Make  𝜆𝜆1 smaller 
to fully utilize 
parallel resource (GPU) 
without changing the 
original solution. 

𝑠𝑠𝑎𝑎𝑡𝑡𝑠𝑠𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖𝑠𝑠𝑛𝑛



Eigenvalue control 

Idea: Change 𝜆𝜆1 to fully utilize parallel resource (GPU). 

We have a tool: EigenPro kernel.

Original kernel:

𝐾𝐾 𝑥𝑥, 𝑧𝑧 = �
𝑖𝑖=1

∞

𝜆𝜆𝑖𝑖𝐵𝐵𝑖𝑖 𝑥𝑥 𝐵𝐵𝑖𝑖 𝑧𝑧

EigenPro kernel:

𝐾𝐾𝐸𝐸𝑖𝑖𝐸𝐸 𝑥𝑥, 𝑧𝑧 = �
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑘𝑘+1𝐵𝐵𝑖𝑖 𝑥𝑥 𝐵𝐵𝑖𝑖 𝑧𝑧 + �
𝑖𝑖=𝑘𝑘+1

∞

𝜆𝜆𝑖𝑖𝐵𝐵𝑖𝑖 𝑥𝑥 𝐵𝐵𝑖𝑖 𝑧𝑧
[Ma, B. NIPS 2017]



Comparisons to state-of-the-art



Interactive ML

Smaller datasets take seconds. 
No optimization parameters to select.



Take away messages

The Power of Interpolation:

1. Explains fast SGD in modern ML. 

2. Allows for much simpler analysis.

3. Leads to very efficient kernel machines, 
adaptive to modern hardware.



Deep learning: 

overparametrization

interpolation

fast SGD

GPU

+ convolutional structures

generalizes well!



The challenge of interpolation

Why do interpolated classifiers generalize?

Ubiquitous:  Deep Neural Networks, Kernel Machines, Random 
Forests, Adaboost

Generalization is probably not (primarily) determined by:

 Non-convexity

 Regularization

 Loss functions

 Deep architectures

 Specific properties of optimization algorithms

Inductive bias is clearly important.

Time to revisit high-dimensional statistics!


	 An Interpolation Perspective on Modern Machine Learning��Sept 2018�Purdue Workshop on Approximation and ML���Mikhail Belkin, Ohio State University,�Department of Computer Science and Engineering, Department of Statistics���
	Slide Number 2
	Supervised ML
	Interpolation
	Accepted wisdom
	�Who is afraid of over-fitting?�
	Theory
	Practice (SGD, kernel machine)
	Slide Number 10
	�A new phenomenon?
	A new phenomenon?
	Two key questions
	The challenge of interpolation�(approximation/statistics)
	This talk: the power of interpolation (optimization)
	Slide Number 16
	Generalization bounds (interpolation)
	Model complexity of interpolation?
	How to test model complexity?
	Robustness to noise
	Slide Number 21
	The challenge of interpolation
	Theoretical analyses fall short
	A way forward?
	��Simplicial interpolation
	1-NN vs simplicial interpolation
	Nearly Bayes optimal
	Interpolated k-NN schemes
	This talk: the power of interpolation (optimization)
	Stochastic Gradient Descent
	The Power of Interpolation
	Exponential convergence of m-SGD
	Minibatch size?
	Why minibatch?
	Interpolation in modern ML
	SGD in modern ML
	This talk: the power of interpolation
	Kernel machines
	Kernel learning 
	Kernel Interpolation
	Real data example (Gaussian kernel)
	Controlling parallelism
	Eigenvalue control 
	Comparisons to state-of-the-art
	Interactive ML
	Take away messages
	Slide Number 57
	The challenge of interpolation

