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Machine Learning/Al 1s becoming a backbone
of commerce and society.
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The fog of war:
What 1s new and what 1s important?
Isolate and analyze components.



Supervised ML

Data (x;,v;), i =1..n,x; € R%,y; € {-1,1}
Goal: construct f:R% - R, that “generalizes” to unseen data.
Empirical risk minimization (basis for most algorithms):

@Xl) YI)Z’ D

f—am%%— L (f(x;), yi)

Optimized using SGD.



Interpolation

Data (x;,y;), i =1..n,x; € RY, y; € {—1,1}

Interpolation: f(x;) = y;

1

Zero-loss fitting:
sign(f(x;)) = i




Accepted wisdom
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Figure 2.3. The estimate on the right seems to be more reasonable than the
estimate on the left, which interpolates the data.



Who 1s afraid of over-fitting?

Zero loss classifiers produce near optimal results.

model # params random crop weight decay train accuracy test accuracy
yes yes 100.0 89.05
: yes no 100.0 89.31
Inception 1,649,402 yes 100.0 26.03
no no 100.0 85.75

[CIFAR 10, from Understanding deep learning requires rethinking generalization, Zhang, et al, 2017]

Ruslan Salakhutdinov’s tutorial on deep learning (Simons
Institute, Berkeley, 2017):

The best way to solve the problem from practical standpoint is
you build a very big system. ITf you remove any of these
regularizations like dropout or L2, basically you want to make
sure you hit the zero training error. Because if you don"t, you
somehow waste the capacity of the model.



Error

Theory

A High Bias High Variance

Validation Error

Training Error

Model Complexity

From https://www.learnopencv.com/bias-variance-tradeoff-in-machine-learning/



Practice (SGD, kernel machine)
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A new phenomenon?

Interpolated classifiers produce near optimal results.

Deep Neural Networks (Zhang, et al, 17, but also much earlier)
Kernel Machines (our work)
Random Forests (PERT, Cutler, Zhao, 2001)
Adaboost (Schapire, et, al. 1998)

Not always recognized as such
(e.g., regularization with very small 1).



A new phenomenon?

Leo Breiman, 1995
From Reflections after refereeing papers for NIPS:

Why don’t heavily parametrized networks overfit the data?
What 1s the effective number of parameters?
When doesn’t backpropagation head for poor local minima?

When should one stop backpropagation and use the current
parameters?

We are finally closing on some answers.



Two key questions

1. Why do interpolated classifiers
generali1ze?

2. Why interpolate?



The challenge of Interpolation
(approximation/statistics)

Do we have theory?

Not much help from existing theory.
Interpolated classifiers are robust to label noise.

Unlikely to understand neural networks until (convex) kernel machines are
understood.

[B., Ma, Mandal ICML 18]

Moving forward: provable (nhear-optimal) generalization for methods that
interpolate.

[B., Hsu, Mitra, 18] [B., Rakhlin, Tsybakov, 18]



This talk: the power of iInterpolation
(optimization)

Optimization under interpolation

Why is SGD so efficient iIn modern learning?
Exponential convergence of mini-batch SGD.

[Ma, Bassily, B., ICML 18]

Application: Fast and simple kernel machines for large data.
Simplicity: no regularization or loss function
Learning kernels that adapt to GPU.

Automatic mini-batch/step size selection.

EigenPro 2.0 [Ma, B., NIPS 17, 18]



Error

Validation Error

Training Error

Model Complexity
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Practice (kernel machine, MNIST)
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Generalization bounds (interpolation)

Basic bound:

VC-dim, fat shattering, Rademacher, Covering numbers, etc..

Model or function complexity, e.g.,VC or || f || 3¢

Expected loss Empirical loss
1
EL ) <y LGl +0*< _)
n n
N
Interpolation Z

Can such bounds be useful?



Model complexity of interpolation?

Low complexity, does not High complexity, grows
grow with data size. linearly with data size.

Many classical

results available.

Margin bounds,

[Schapire, et al 98], etc.




How to test model complexity?

Two ways:
1. Synthetic data. T TN

ceeeT A0, 1) A N
— == A(2,1)Y - N
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2. Add label noise.

® o ® @ e ®

Model complexity grows but Bayes opt. does not change!

Expect overfitting to become severe as model complexity
grows.



Robustness to noise

What kind of generalization bound could work here?
(hopefully correct but nontrivial)

07 <0 [“) <09

n
50 90 : T :
g
”
80 | - B
y i
40 - 70 | p> s T
F2 -~
»
60 | 2 ( / .
] 30 H / g
V] @ 50 | #
4 4+
Y Y / B t
& & a0} AN 44 ayes op >
y 2 . 3
30 | - -
w»= ¥ (Gauss, Interpolation w=v Gauss, Interpolation
B~ B Laplace, Interpolation 4 - B=E Laplace, Interpolation
10 - ®—@ Gauss, Overfitting - 20 |- &8 Gauss, Overfitting ]
#—& |aplace, Overfitting z v #—& | aplace, Overfitting
oo Bayes optimal 10 | oo Bayes opt. (lower bound)| 7
”
0 L I L L 0 L L I L
0 20 40 60 80 100 0 20 40 60 B0 100
added label noise % added label noise %

(a) Synthetic-2 (b) MNIST



—

c(n)
0.7<0*| |[—=]<09 n>» 1

There are no bounds like this!
Not clear whether they can exist mathematically.

e.g., can it be true if c(n) = ¢(lIfll41)?



The challenge of Interpolation

Do we have theory?

Not much help from existing theory.
Interpolated classifiers are robust to label noise.

Unlikely to understand neural networks until (convex) kernel machines are
understood.

[B., Ma, Mandal ICML 18]

Moving forward: provable (nhear-optimal) generalization for methods that
interpolate.

[B., Hsu, Mitra, 18] [B., Rakhlin, Tsybakov, 18]



Theoretical analyses fall short

VC-dimension/Rademacher complexity/covering bounds.

Cannot deal with iInterpolated classifiers when Bayes
risk 1s non-zero.

Empirical risk 1s zero — hard to bound the gap.

Regularization-type analyses (Tikhonov, early stopping,
etc.)

Diverge as 41— 0 for fixed n.
Algorithmic stability.

Does not apply when empirical risk is zero, expected risk non-zero.
Classical smoothing methods (i1.e., Nadaraya—-Watson).

Most classical analyses do not support interpolation.

(But Hilbert Regression Scheme [Devroye, et al, 1998], 1-NN, our
recent results)



A way forward?

1-nearest neighbor classifier 1s very suggestive.

Interpolating classifier with a non-trivial (sharp!)
performance guarantee (twice the Bayes risk).

» No margin assumptions.
» Analysis not based on uniform bounds.
» Estimate generalization, not the generalization gap.



Simplicial 1nterpolation

1. Triangulate.
2. Linearly interpolate

3. Threshold

[B., Hsu, Mitra, 18]



1-NN vs simplicral interpolation

Simplicial 1nterp.

1-NN




Nearly Bayes optimal
Theorem: (dimension d)

1
E(L(SI)) < (1 + 2—d> X Bayes Risk

Classical bound:

E (L(lNN )) < 2 X Bayes Risk

The blessing of dimensionality!

[B-, Hsu, Mitra, 18]



Interpolated k-NN schemes
y(x) = sign (Ew(x, x;)y;)

Singular kernel, e.g. w(x,z) = —In||x — z||
Theorem:

Weirghted (interpolated) k-nn schemes with certain singular
kernels are consistent.

Moreover, statistically optimal!

[B., Hsu, Mitra, 18] [B., Rakhlin, Tsybakov, 18]



This talk: the power of iInterpolation
(optimization)

Optimization under interpolation

Why is SGD so efficient iIn modern learning?
Exponential convergence of mini-batch SGD.

[Ma, Bassily, B., ICML 18]

Application: Fast and simple kernel machines for large data.
Simplicity: no regularization or loss function
Learning kernels that adapt to GPU.

Automatic mini-batch/step size selection.

EigenPro 2.0 [Ma, B., NIPS 17, 18]



Stochastic Gradient Descent

= (Jw(Xij) — Vi), e.g.
] 4g/

w* = argmin L(w) = argmin— Z L;(w)

w w n

SGD ldea: optimize YL;(w), m at a time.

Error after t steps SGD: 1/t

AIl major neural network architectures use SGD.



The Power of Interpolation
Key observation:
Interpolation f,(x;)) =y, = V;L;(w") =0
Implies exponential convergence.
w-1—-1)?%*+Ww-1+1)? [non-interpolation]
[SGD oscillates, adaptive step size/slow convergence]

(w;-1—1)2+(wy-1+1)? [interpolation]

[fixed step size, exponential convergence]



Exponential convergence of m-SGD

Convex loss function L (A-smooth, a-strongly convex),
L;(f-smooth).
Theorem 1 [exponential convergence of m -SGD]

A
E L(Weiq) < 5(1 - U*(m)a)t [lwy — w™|

m
B+A(m—1)

n*(m) =

[Ma, Bassily, B., ICML 18]

Related work (m =1): [Strohmer, Vershynin 09] [Moulines, Bach, 11]
[Needell, Srebro, Ward, 14]



Minibatch si1ze?

Theorem 2: Critical size nﬁzz% [optimal Tixed step size]

[1.0linear scaling: m <m"] One step m-SGD = msteps of 1-SGD

[2. saturation: m>m"] One step m-SGD ~ one step of full GD

t(m)
A Convergence per SGD i1teration.
N nf==§ (nearly) data
Linear independent. Quadratic
__§<_:g!i_n_g__’ ......................... Saturation loss function:
| ., rH
: m ~
i Ay (H)
1 m

O(n) computational gain over GD



Why minibatch?

GPU: fast highly parallel matrix x matrix products

- limits algorithms available

Algorithmic requirements: |
matrix X matrix prOdUCtS + Nvidia Titan X GPU (from nvidia.com)
limited amount of other computation (CPU)

Full parallel minibatch computation 1 <Km<«n
(much larger than 1-SGD, much smaller than full GD)



How do you interpolate?
Think about a m xn linear system: Ax =bh.

Interpolation 1In modern ML

Need rank rank4A >n (at least as many parameters as equations).

Over-parametrization # parameters > # training data.
More parameters - easier to interpolate (even non-convex).
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From Canziani, et al., 2017.
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Ruslan Salakhutdinov’s tutorial on deep
learning (Simons Institute, Berkeley, 2017):

The best way to solve the problem from
practical standpoint is you build a very big
system. If you remove any of these
regularizations like dropout or L2, basically
you want to make sure you hit the zero
training error. Because if you don"t, you
somehow waste the capacity of the model .



SGD 1n modern ML

Systematic over-parametrization.

# parameters >> # training data
Over-parametrization - interpolation -> fast SGD:

SGD 0(n) computational gain (n~10>) over GD
+ GPU implementation ~100 over CPU.

We used to do
that..

Combined: SGD on GPU ~107 faster than GD on CPU!



This talk: the power of Interpolation

> Optimization under interpolation

Why is SGD so efficient iIn modern learning?
Exponential convergence of mini-batch SGD.

[Ma, Bassily, B., ICML 18]
> Application: Fast and simple kernel machines for large data.
Simplicity: no regularization or loss function
Learning kernels that adapt to GPU.

Automatic mini-batch/step size selection.

EigenPro 2.0 [Ma, B., NIPS 17, 18]



Kernel machines

H (Reproducing Kernel Hilbert space),

llx=yl11?

p.d. kernel K(x,z), (e.g., K(x,y)=e 2 )

fr=argmingeg pp=y, I1fllac

lxe=ylI?
Representer Theorem (K(x,y)=e o> , For example)

frx) = E“il((xirx); a=K"y

l
Minimum norm interpolation.



Kernel learning

Beautiful classical
statistical/mathematical theory

RKHS Theory [Aronszajn,.., 50s]

Potential functions method [lzerman,.., 60s]
Splines [Parzen, Wahba,.., 1970-80s]
Kernel machines [Vapnik,.., 90s]

Very attractive setting:
Convex
Analytically tractable

Can be viewed as a 2-layer neural net.



Kernel Interpolation

No loss functions -- no regularization:
Ka" =y
Direct inversion: cost n® (does not map to GPU).

Gradient descent: a(t) = a(t_l) — n(Ka(t_l) — y)

[Richarson, Landweber,..]

Cost n? per iteration. GPU compatible.

How much gain from SGD?



Real data example (Gaussian kernel)
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Controlling parallelism

Problem: Parallelization is controlled by

convergence of gradient descent)

A time to

converge
original kernel &

adaptive kernel k¢

- - >
1 m* (k) m* (kg) = mj e batch size
under-utilization 100% utilization utilization of ¢

1

1 (ct.

Idea: Make A1, smaller
to fully utilize
parallel resource (GPU)
without changing the
original solution.



Eigenvalue control

Idea: Change 1, to fully utilize parallel resource (GPU).

We have a tool: EigenPro kernel.

| == Spectrum of original kernel K
- - | — Spectrum of modified kernel PK
Original kernel: \
o0 \
K2 = ) de(e) AR
k+17 :
EigenPro kernel: k+1

Eigenvalue index

k 00
Kgip(x,2) = Z Arsr€;(x)e;(z) + z Aiej(x)e;(z)
= eyt [Ma, B. NIPS 2017]



Comparisons to state-of-the-art

Our Method ]
Dataset Size (use | GTX Titan Xp) Results of Other Methods
error | GPU time resource time | error | reference
4.8 h on .
106 . 0.70% EigenPro [MB17]
MNIST ml? >l<01 o || 0:67% 21 m I GIT};( thl‘?]“ X
1344 AWS vCPUs 0.72% PCG [ACW16]
less than 37.5 hours _ +
on 1 Tesla K20m 0.85% [LML™14]
4 hon o
ImageNett | 1.3 x 106 || 20.6% 40 m | Tesla K40c 20.7% FALKON [RCRI17]
- 19.9% Inception-ResNet-v2 [SIVA17]
32hon o . .
1 GTX Titan X 31.7% EigenPro [MB17]
. G . 1.5hon n 2G
TIMIT 1.‘1 : 10G 31.6% 34 m | Tesla Kd0c 32.3% FALKON [RCR17]
/210 (4 epochs) ST TBM
- q . +
Blue Gene/Q cores 33.5% Ensemble [HAS ™ 14]
32.0% , 17 o S 47&ivhso$cpu.e 33.5% BCD [TRVRI6]
< Cpochs multiplc AWS
o N
g2.2xlarge instances 32.4% DNN [MGL™17]
multiple AWS 30.99% SparseKernel [MGL™ 17]
g2.2xlarge instances o (use learned features)
6 m on . .
- 19.8% EigenPro [MB17]
SUSY 4106 19.7% 48 s ' GEXmT;;“" X
| Tesla K40c 19.6% FALKON [RCR17]
3 . .
leﬁpg&‘ERg ~ 20% Hierarchical [CAS16]




Interactive ML

Dataset Size Our method | LibSVM
TIMIT 1-10° 15 s 1.6 h
SVHN 7-10% 13 s 3.8h
MNIST 6-10% 6s O m
CIFAR-10 | 5-10% 8s 3.4 h

Smaller datasets take seconds.
No optimization parameters to select.




Take away messages

The Power of Interpolation:
Explains fast SGD 1n modern ML.
Allows for much simpler analysis.

Leads to very efficient kernel machines,
adaptive to modern hardware. FE==——




Deep learning:

overparametrization
interpolation
fast SGD

GPU

\\»»generalizes well!

+ convolutional structures



The challenge of 1nterpolation

Why do interpolated classifiers generalize?

Ubiquitous: Deep Neural Networks, Kernel Machines, Random
Forests, Adaboost

Generalization is probably not (primarily) determined by:
Non-convexity
Regularization
Loss functions
Deep architectures
Specific properties of optimization algorithms

Inductive bias 1s clearly important.

Time to revisit high-dimensional statistics!
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