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John W. Tukey

EXPLORATORY DATA
ANALYSIS
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Even more understanding is
lost if we consider each thing
we can do to data only in
terms of some set of very
restrictive assumptions
under which that thing is
best possible—assumptions
we know we CANNOT check

in practice.



TRIGGER WARNING!

data

model
noise
parameter
error
uncertainty
overfit



Selected regression / approximation / UQ literature
My personal bibliography

Ghanem and Spanos, Stochastic Finite Elements (Springer, 1991)
Xiu and Karniadakis, The Wiener-Askey polynomial chaos (SISC, 2002)
Nobile, Tempone, and Webster, A sparse grid stochastic collocation method (SINUM, 2008)

Gautschi, Orthogonal Polynomials (Oxford UP, 2004)

Koehler and Owen, Computer experiments (Handbook of Statistics, 1996)

Jones, A taxonomy of global optimization methods based on response surfaces (JGO, 2001)

Cook, Regression Graphics (Wiley, 1998)
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Regression

Approximation




Regression

GIVEN
i.i.d. samples {zi,yi}
from unknown 7T(£C, y)

GOAL

statistically characterize ¥ |

e.g., Ely|x], Var|y|x]
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Regression

MODEL (e.g., polynomials)
modeled r.v,,
Yy = p(.fl?,(g) + € €— zero-mean,
\_'_I independent of x
.l Ely|z]
FIT (e.g., max likelihood)
A . 2
= argmin 3 (s — p(zs,0)
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Regression

GIVEN
i.i.d. samples {zi yi}
from unknown 7T(£I3, y)

GOAL

statistically characterize ¥ |

e.g., Ely|x], Var|y|x]

MODEL (e.g., polynomials)

modeled r.v.,
Yy = p(SL‘,Q) + £ €— zero-mean,

\_'_I independent of x

Ely|x]

FIT (e.g., max likelihood)

A

0 = . T iae ’
arggnm z@: (y p(x ))

PREDICT
Ely|z"] ~ p(z*,0) = p(z”)
QUANTIFY UNCERTAINTY

Var[y |xz"] ~ “formula”
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Approximation

Does a unique, best approximation exist?

continuous
functions

p* = argmin ||[p— f|
P - Pn \

continuous

function

polynomials

polynomials

How does the best error behave?
of degree n

Ip™ = fIl = €e"(n)

Can we construct an approximation?

Algorithm: Given f, compute p

And analyze its error?

Ip—Ffl < Ce'(n)



Approximation

GIVEN

a function f(x)

a known density ()
GOAL

find p(x) such that

the error ||p — f|| is small
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choose I;
compute y; = f(x;) > |
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Approximation

CONSTRUCTION
choose I;
compute y; = f(x;) > |

fit p = argmin
p € Py Z

GIVEN
a function f(x)

a known density ()
GOAL
find p(x) such that

the error ||p — f|| is small



Regression Approximation

p = argmin Z (yz —p(CUZ'))Q




Regression Approximation

h = mgmn1§: p(x;, 0 2 p = mgmu1§:

pE€Pn

The story of the data and fitted curve is different.
But does it matter? YES



REGRESSION VS. APPROXIMATION

What is error?



Regression Approximation

i X

Confidence interval Approximation error

Cony, Con. Wi
. N Py, 04, Or
plx) + 2‘se[y\af] 48y,

'/ |p(z) — f()] '2%,/

plug-in estimate Error norms

of standard error (/ e |2 (@) dm) 1/2

sup 1p(x) — f(z) |




REGRESSION VS. APPROXIMATION

What is convergence?



Regression Approximation




Regression Approximation

As data increases, root-n consistency

é — 0 “true”
]5([13) N p(.fl?) parameters
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Regression Approximation
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Regression Approximation

X X

As data increases, root-n consistency As the approximation class grows

plz) — f(x)|| — 0

AN

0 — 0 “true”
]3([13) N p(a?) parameters



Regression Approximation

As data increases, root-n consistency As the approximation class grows
p) = f@) || =0

Convergence rate depends on f ()
* high order derivatives

* size of region of analyticity

« Chebyshev coefficients

é — 0 “true”
]3([13) N p(il?) parameters



cambridge Monographs on Applied and Computational Mathematics

Scattered Data
Approximation

Holger Wendland

Carl Edward Rasmussen and Christopher K. |. Williams



Gaussian process regression Radial basis approximation




Gaussian process regression

GIVEN
pairs {Ti,yi}



Gaussian process regression

GIVEN
pairs {Zi, Vi }
ASSUME

Yi = g(:vz-, cu) one realization of a GP



Gaussian process regression

GIVEN
pairs {Zi, Vi }
ASSUME

Yi = g(:vz-, cu) one realization of a GP

y; = g(x;,-) among many possible
realizations



Gaussian process regression
CORRELATION MODEL (e.g.)

k(z,2'; 0) = exp(|lz —2'[*/9)

GIVEN
pairs {Zi, Vi }
ASSUME

Yi = g(:vz-, cu) one realization of a GP

y; = g(x;,-) among many possible
realizations



Gaussian process regression
CORRELATION MODEL (e.g.)

k(z,2'; 0) = exp(|lz —2'[*/0)

GIVEN
pairs {Zi, Vi }
ASSUME

Yi = g(xi, cu) one realization of a GP

y; = g(x;,-) among many possible
realizations



Gaussian process regression
CORRELATION MODEL (e.g.)

f
\\/ w(z,2'; 0) = exp(|z — '|2/0)
\\\/

g W/\,ﬂ///ll
itk \\?v{ t/

GIVEN
pairs {Zi, Vi }
ASSUME

Yi = g(ill'z', cu) one realization of a GP

y; = g(x;,-) among many possible
realizations



Gaussian process regression
CORRELATION MODEL (e.g.)

k(z,2'; 0) = exp(|lz —2'[*/0)

FIT

maxi@mize likelihood(0; {x;,v;})

GIVEN
pairs {Zi, Vi }
ASSUME

Yi = g(:vz-, cu) one realization of a GP

y; = g(x;,-) among many possible
realizations



Gaussian process regression

GIVEN
pairs {Zi, Vi }
ASSUME

Yi = g(:vz-, cu) one realization of a GP

y; = g(x;,-) among many possible
realizations

CORRELATION MODEL (e.g.)
k(z,2'; 0) = exp(|z —2'|*/0)

FIT

maxi@mize likelihood(0; {x;,v;})

PREDICT (B.L.U.E.)
y(z) = Elg(z, ) [{zs,yi}]

= Zyz ’wz(x)



Gaussian process regression

GIVEN
pairs {Ti,yi}

ASSUME
Yi — g(ill'@', w)
Yi — g(il%;, )

one realization of a GP

among many possible
realizations

CORRELATION MODEL (e.g.)
k(z,2'; 0) = exp(|z —2'|*/0)

FIT

maxi@mize likelihood(0; {x;,v;})

PREDICT (B.L.U.E.)
y(z) = Elg(z, ) [{zs,yi}]

= Zyz- w; ()

QUANTIFY UNCERTAINTY

Var|g(x,-) |{z:,y;} ] = “formula”



Gaussian process regression
CORRELATION MODEL (e.g.)

k(z,2'; 0) = exp(lx — 2']?/0)

FIT

maxi@mize likelihood(0; {x;,v;})

PREDICT (B.L.U.E.)
y(z) = Elg(z, ) [{zs,yi}]

GIVEN =S yiwilx)
pairs {Ti,yi} i

ASSUME QUANTIFY UNCERTAINTY

Yi = g(:vz-, cu) one realization of a GP Var[g(:l;, ) ‘ {5157:7 yz}] = “formula”

y; = g(x;,-) among many possible
realizations



Gaussian process regression

GIVEN
pairs {Ti,yi}

ASSUME
Yi — g(ill'@', w)
Yi — g(il%;, )

one realization of a GP

among many possible
realizations

CORRELATION MODEL (e.g.)
k(z,2'; 0) = exp(|z —2'|*/0)

FIT

maxi@mize likelihood(0; {x;,v;})

PREDICT (B.L.U.E.)
y(z) = Elg(z, ) [{zs,yi}]

= Zyz- w; ()

QUANTIFY UNCERTAINTY

Var|g(x,-) |{z:,y;} ] = “formula”



Gaussian process regression Radial basis approximation




Radial basis approximation
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a queryable function f(x)
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Radial basis approximation

QUERY THE FUNCTION

yi = f(x;)
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Radial basis approximation

QUERY THE FUNCTION

vi = f(x;)
CHOOSE KERNEL < |
k(x,2'; €) = exp(e |z — 2'|?)
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Radial basis approximation

QUERY THE FUNCTION
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QUERY THE FUNCTION

yi = f(x;)

CHOOSE KERNEL

k(x,2's €) = exp(e o — 2'[)

DEFINES BASIS

oi(x) = k(x, 245 €)

COMPUTE COEFFICIENTS
Ka=f
K = k(x;,x;), fi = f(x;)

PREDICT

(@) = 3 ai 6i(a)

Radial basis approximation

GIVEN
a queryable function f(x)

centers T1,...,Tp

GOAL

find s(x) such that

the error ||s — f| is small
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Gaussian process regression Radial basis approximation

The story of the data and fitted curve is different.
But does it matter? YES



Comments on error and convergence

GP Conditional Variance iS NOT €I'TOr (except possibly under some very specific conditions).
RBF error estimates are asymptotic in the fill distance.

Both approaches make practically unverifiable assumptions about
the origin of the data generating function/process.

As a caricature:
statisticians try to reduce the error by finding a better model
(e.g., solve the fitting problem better)
mathematicians try to reduce the error with more queries
(i.e., sample into asymptopia)



Regression Approximation

Which one is a computer simulation?



What is error in a computer simulation?

Statistical Science
1989, Vol. 4, No. 4, 409-435

Design and Analysis of Computer
Experiments

Jerome Sacks, William J. Welch, Toby J. Mitchell and Henry P. Wynn

Abstract. Many scientific phenomena are now investigated by complex
computer models or codes. A computer experiment is a number of runs of
the code with various inputs. A feature of many computer experiments is
that the output is deterministic—rerunning the code with the same inputs
gives identical observations. Often, the codes are computationally expensive
to run, and a common objective of an experiment is to fit a cheaper predictor
of the output to the data. Our approach is to model the deterministic output
as the realization of a stochastic process, thereby providing a statistical
basis for designing experiments (choosing the inputs) for efficient predic-
tion. With this model, estimates of uncertainty of predictions are also
available. Recent work in this area is reviewed, a number of applications
=
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J. R. Statist. Soc. B (2001)
63, Part 3, pp. 425-464

Bayesian calibration of computer models

Marc C. Kennedy and Anthony O’Hagan
University of Sheffield, UK

[Read before The Royal Statistical Society at a meeting organized by the Research Section on
Wednesday, December 13th, 2000, Professor P. J. Diggle in the Chair]

Summary. We consider prediction and uncertainty analysis for systems which are approximated
using complex mathematical models. Such models, implemented as computer codes, are often
generic in the sense that by a suitable choice of some of the model’s input parameters the code can
be used to predict the behaviour of the system in a variety of specific applications. However, in any

L soecific application the values of necessarv parameters mav be unknown. In this case phvsical |

Sacks et al. (1989)

Kennedy and O'Hagan (2001)




What is error in a computer simulation?

RELIABILITY

A ENGINEERING
&
& _ !' i SYSTEM
ELSEVIER Reliability Engineering and System Safety 75 (2002) 333-357 SAFETY

www.elsevier.com/locate/ress

Error and uncertainty in modeling and simulation

William L. Oberkampf®™*, Sharon M. DeLand®, Brian M. Rutherford®,
Kathleen V. Diegertd, Kenneth F. Alvin®

“Validation and Uncertainty Estimation Department, MS 0828, Sandia National Laboratories, Albuquerque, NM 87185-0828, USA
Mission Analysis and Simulation Department, MS 1137, Sandia National Laboratories, Albuquerque, NM 87185-1137, USA
“Statistics and Human Factors Department, MS 0829, Sandia National Laboratories, Albuquerque, NM 87185-0829, USA
‘lReliability Assessment Department, MS 0830, Sandia National Laboratories, Albuquerque, NM 87185-0830, USA
“Structural Dynamics and Smart Systems Department, MS 0847, Sandia National Laboratories, Albuquerque, NM 87185-0847, USA

Received 14 April 2000; accepted 8 September 2001

NUMERICAL INVERTING OF MATRICES OF HIGH ORDER

JOHN VON NEUMANN AND H. H. GOLDSTINE

ANALYTIC TABLE OF CONTENTS

PREFACE o6 coo0sisiiasostesnsstiinessnssnssosdsdsdeintesssdsossss . 1022
CHAPTER I. The sources of errors in a computation
1.1, The sources of errors.
(A) Approximations implied by the mathematical model.
(B) Errors in observational data.
(C) Finitistic approximations to transcendental and implicit mathe-
matical formulations.
(D) Errors of computing instruments in carrying out elementary
operations: “Noise.” Round off errors. “Analogy” and digital com-
puting. The pseudo-operations.. .. ......covvviiiirevnnnenins

Oberkampf et al. (2002)

von Neumann and Goldstine
Bulletin of the AMS (1947)

[h/t Joe Grcar]



The von Neumann and Goldstine Catechism

“This analysis of the sources of errors should be objective and strict inasmuch as
completeness is concerned, but when it comes to the defining, classifying, and
separating of the sources, a certain subjectiveness and arbitrariness is unavoidable.
With these reservations, the following enumeration and classification of sources of
errors seems to be adequate and reasonable.”

Mathematical model
Observations and parameters

Finitistic approximations

Round-off



The von Neumann and Goldstine Catechism

Mathematical model

NOTES

How well math model
approximates reality

Model-form error



The von Neumann and Goldstine Catechism

Observations and parameters

NOTES

Forward and inverse UQ

Most of the UQ methods
literature



The von Neumann and Goldstine Catechism

NOTES

Asymptotics from classical
numerical analysis

Deterministic numerical noise
Finitistic approximations

“Computational noise in
deterministic simulations is as

Round-oft ill-defined a concept as can be
found in scientific computing.”



Summary thoughts

Computer models are deterministic. In my
opinion, approximation tools are better suited.

But computational noise is really annoying, if you
take it seriously.

LOTS of fundamental research opportunities for
applying statistical methods to noise-less data---
i.e., the approximation setting.

What does Bayes have to do with it?



Practical advice

Everyone, civilized conversation and argumentation!!!

Statisticians, include numerical experiments that demonstrate
asymptotic convergence of testing error.

Numerical analysts, convergence analysis of statistical standard error
and bootstrap standard error in the context of constructive
approximation.

Write three review papers:
Regression for numerical analysts
Approximation for statisticians
Reconciling perspective with authors from both communities



QUESTIONS?

Why should we care?

What do you do in practice?

PAUL CONSTANTINE

Assistant Professor

University of Colorado Boulder
activesubspaces.org
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Active Subspaces
SIAM (2015)
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Active Subspaces

Emerging Ideas for Dimension
Reduction in Parameter Studies

Paul G. Constantine



