How effective is your classifier? Revisiting the role of metrics in machine learning

SANMI KOYEJO CS @ ILLINOIS

Joint work with Ran Li, Xiaoyan Wang, Gaurush Hiranandani, Shant Boodaghians, and Ruta Mehta

Image Source: https://davepannell.com/public/2016/03/Email-marketing-vs-spam.jpg

- Users complain that most real emails are labelled spam
- ~90% of all email is spam*
- Suggests that accuracy is the wrong metric as it gives equal weight to all errors

Error analysis

		Ground truth	
		Spam	Not Spam
Predicted	Spam	ТР	FP
	Not Spam	FN	TN

• Accuracy = TP + TN = 1 - FP - FN

To improve user calibration, try evaluating and/or optimizing weighted accuracy e.g.

$$\phi(h) = 1 - 0.1 \,\mathrm{FP} - \mathrm{FN}$$

The confusion matrix

		Groun		
		Y = 1	Y = 0	$-\mathbf{C}(h)$
Predicted	h(x) = 1	ТР	FP	$= \mathbf{U}(n)$
	h(x) = 0	FN	TN	

Beyond Accuracy, more general metrics are nested functions

$$\phi(h) = \psi\big(\mathbf{C}(h)\big)$$

- Metrics are used to compare classifiers, or can be optimized directly
- The classifier performance metric can be approximated from data.

Lots of real world examples

 $\phi(h) = a_1 \mathrm{TP} + a_2 \mathrm{FP} + a_3 \mathrm{FN} + a_4 \mathrm{TN}$

$$TPR = \frac{TP}{TP + FN}, \ TNR = \frac{TN}{FP + TN}, \ Prec = \frac{TP}{TP + FP}, \ FNR = \frac{FN}{FN + TP}, \ NPV = \frac{TN}{TN + FN}.$$

$$AM = \frac{1}{2} \left(\frac{TP}{\pi} + \frac{TN}{1 - \pi} \right) = \frac{(1 - \pi)TP + \pi TN}{2\pi(1 - \pi)}, \ F_{\beta} = \frac{(1 + \beta^2)TP}{(1 + \beta^2)TP + \beta^2 FN + FP} = \frac{(1 + \beta^2)TP}{\beta^2 \pi + \gamma},$$
$$JAC = \frac{TP}{TP + FN + FP} = \frac{TP}{\pi + FP} = \frac{TP}{\gamma + FN}, \quad WA = \frac{w_1TP + w_2TN}{w_1TP + w_2TN + w_3FP + w_4FN}.$$

 $\pi = TP + FN, \ \gamma = TP + FP$

Metrics in ranking and recommendation

"Results show that improvements in RMSE often do not translate into [top-N ranking] accuracy improvements. In particular, a naive non-personalized algorithm can outperform some common recommendation approaches and almost match the accuracy of sophisticated algorithms"

P. Cremonesi, Y. Koren, and R. Turrin. "Performance of recommender algorithms on top-n recommendation tasks." Recsys, 2010.

Metric choice has a large impact on realworld machine learning performance.

Given a complex metric, how can we efficiently construct classifiers that (approximately) optimize it? Given a new classification problem, which metric should you use to measure performance?

One simple trick...

A RE-WEIGHTING STRATEGY

Multiclass classification

			Groun	d truth	
		Y = 1	Y = 2		Y=K
Predicted	h(x) = 1	C11	C12		С1К
	h(x) = 2	C21	C22		С2к
	:				
	h(x) = K	Ск1	Ск2		Скк

Standard metric is Accuracy

$$\phi(h) = c_{11} + c_{22} + \ldots + c_{KK}$$

 $= \langle I, C(h) \rangle$

C(h)

e.g. logistic regression, RF, DNN, ...

 $s_i(x) \approx p(y = i | x)$ $h(x) = \underset{i \in [K]}{\operatorname{argmax}} s_i$

Standard Prediction Strategy

$$\max_h \langle A, C(h) \rangle$$

$$s_i(x) \approx p(y = i | x)$$
 $h(x) = \underset{i \in [K]}{\operatorname{argmax}} \mathbf{a}_i^{\mathsf{T}} \mathbf{s}(x)$

e.g. logistic regression, RF, DNN, ...

Narasimhan, H., et al. "Consistent multiclass algorithms for complex performance measures." ICML. 2015.

A small experiment

$$\eta_k(x) \propto e^{\mathbf{w}_k^{\top} \mathbf{x}}$$
$$\mathbf{x} \sim \mathcal{N}(0, \mathbf{I}); \ \mathbf{w}_k = d_1 |k - K| \mathbf{1}$$
$$A_{j,j} = e^{-d_2 j}$$

- 1. Generate random data from model
- 2. Fit a logistic regression model
- 3. Post-process predictions

Performance Ratio = $\frac{\text{Perf. of weighted postprocess}}{\text{Perf. of std. prediction}}$

Simple re-weighting can have a huge effect!

$$s_i \approx p(y = i|x) | h(x) =$$

$$h(x) = \underset{i \in [K]}{\operatorname{argmax}} \mathbf{b}_i^\top \mathbf{s}$$

$$B = \nabla \psi |_{C = C^*}$$

Same strategy works for more complex metrics

$$\max_h \psi\bigl(C(h)\bigr)$$

Applies to more general settings

An application to recommender systems

User assigns rating to each item.

 $r_{i,j} \in [K]$

Solve this as simultaneous (over items) multiclass classification problem i.e. multioutput classification

$$\phi(h) = \sum_{i=1}^{K} \sum_{j=1}^{K} |i - j| C_{i,j}$$

Postprocessed OrdRec

$$s_i(x) \approx p(y=i|x)$$

$$\underset{i \in [K]}{\operatorname{argmax}} \mathbf{s}_i(x) \quad \underset{i \in [K]}{\operatorname{argmax}} \mathbf{a}_i^\top \mathbf{s}(x)$$

Koren, Yehuda, and Joe Sill. "OrdRec: an ordinal model for predicting personalized item rating distributions." *Recsys* 2011.

AVERAGE	OrdRec	C-ORDREC
Micro Macro Instance	$0.8603 {\pm} 0.0010$ $0.8577 {\pm} 0.0032$ $0.8565 {\pm} 0.0014$	$0.8640{\pm}0.0009\ 0.8643{\pm}0.0022\ 0.8619{\pm}0.0011$

When & Why does reweighting work?

THE GEOMETRY OF CONFUSION

- Set of feasible confusion matrices is a bounded convex set
- Optimization properties will depend on how gradient field of the metric interacts with the feasible set
- Any monotonic metric will be optimized at the boundary

 $TP + FN = \pi$, $TN + FP = 1 - \pi$

- All points on the boundary are determined by the support function
- This characterization is exhaustive i.e.
 characterizes ALL metrics that are consistently
 optimizable via linear post-processing

$$s_i(x) \to p(y=i|x)$$

$$B \to \nabla \psi|_{C=C^*}$$

$$\underset{i \in [K]}{\operatorname{argmax}} \mathbf{b}_i^\top \mathbf{s} \to h^*(x)$$

This classification strategy is consistent

Binary classification with general metrics

$$s(x) \approx p(y = i|x)$$

Logistic regression w/ MLE Holder densities w/ kernel approx.

$$g_{\delta}(x) = \operatorname{sign}\left(s(x) - \hat{\delta}\right)$$

Plug-in classifier

$$\hat{h}_n(x) = \operatorname*{argmax}_{\delta \in [0,1]} \phi_n\left(g_\delta\right)$$

Threshold search

$$|\phi(h^*) - \phi(\hat{h}_n)| \le O\left(\frac{\log n}{n}\right)$$

Yan, K., Zhong, Ravikumar (2018)

Which metric should you use?

THE BINARY CLASSIFICATION CASE

Recall: Lots of real world examples

 $\phi(h) = a_1 \mathrm{TP} + a_2 \mathrm{FP} + a_3 \mathrm{FN} + a_4 \mathrm{TN}$

$$TPR = \frac{TP}{TP + FN}, \ TNR = \frac{TN}{FP + TN}, \ Prec = \frac{TP}{TP + FP}, \ FNR = \frac{FN}{FN + TP}, \ NPV = \frac{TN}{TN + FN}.$$

$$\begin{split} \mathbf{A}\mathbf{M} &= \frac{1}{2} \left(\frac{\mathbf{T}\mathbf{P}}{\pi} + \frac{\mathbf{T}\mathbf{N}}{1 - \pi} \right) = \frac{(1 - \pi)\mathbf{T}\mathbf{P} + \pi\mathbf{T}\mathbf{N}}{2\pi(1 - \pi)}, \ F_{\beta} &= \frac{(1 + \beta^2)\mathbf{T}\mathbf{P}}{(1 + \beta^2)\mathbf{T}\mathbf{P} + \beta^2\mathbf{F}\mathbf{N} + \mathbf{F}\mathbf{P}} = \frac{(1 + \beta^2)\mathbf{T}\mathbf{P}}{\beta^2\pi + \gamma}, \\ \mathbf{J}\mathbf{A}\mathbf{C} &= \frac{\mathbf{T}\mathbf{P}}{\mathbf{T}\mathbf{P} + \mathbf{F}\mathbf{N} + \mathbf{F}\mathbf{P}} = \frac{\mathbf{T}\mathbf{P}}{\pi + \mathbf{F}\mathbf{P}} = \frac{\mathbf{T}\mathbf{P}}{\gamma + \mathbf{F}\mathbf{N}}, \quad \mathbf{W}\mathbf{A} = \frac{w_1\mathbf{T}\mathbf{P} + w_2\mathbf{T}\mathbf{N}}{w_1\mathbf{T}\mathbf{P} + w_2\mathbf{T}\mathbf{N} + w_3\mathbf{F}\mathbf{P}} + w_4\mathbf{F}\mathbf{N}. \end{split}$$

Limited formal guidance

Academia:

Use the standard metric in your application area

- Accuracy
- Top-K accuracy
- F1 measure

Industry: Hire a consultant or economist

- User survey
- A/B tests

Our Approach

Query an "expert" to determine the real-world value of a classifier i.e. the ideal evaluation metric

Pairwise queries

Experts give inaccurate results for value queries More accurate results for comparison queries $\phi(h) = ?$

 $\phi(h_1)$ vs. $\phi(h_2)$?

THE "ORACLE" CARES ABOUT WORST CASE QUERY COMPLEXITY

Speed Matters!

Exploiting the geometry...

- Only need to query classifiers on the boundary – since we already know optimal is within this subset
- Boundary is onedimensional, parameterized by "angle"

Using binary search

- Under weak conditions, metric is unimodal with respect to boundary
- Thus, can simple binary search to find the optimal confusion matrix
- Simultaneously recovers gradient of the optimal metric

Guaranteed recovery with finite queries

For the linear case, when algorithm terminates, we recover

$$\phi^*(h) = a_1^* \mathrm{TP}(h) + a_2^* \mathrm{FP}(h) + a_3^* \mathrm{FN}(h) + a_4^* \mathrm{TN}(h)$$

Guaranteed to be ϵ accurate after $\mathcal{O}\left(\log(\frac{1}{\epsilon})\right)$ steps

If no additional assumptions, this matches lower bound

Stable to system noise e.g. noisy responses from the "expert"

Conclusion

Metric choice has a large impact on realworld machine learning performance.

Re-weighted postprocessing is efficient for optimizing complex metrics.

Measurement is at the core of empirical research

Extensions to other machine learning problems e.g. ranking, regression, ...

Faster elicitation using alternative query mechanisms

Noise tolerance, robust elicitation

Thank you

QUESTIONS?

SANMI@ILLINOIS.EDU