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Introduction

» Graphs naturally occur in many applications
Hidden space: graph-like structures

Simple, non-linear structure behind data




Overall Goal:

Using geometric and topological ideas to develop graph
reconstruction algorithms for|various settings with theoretical
understanding / guarantees




Some Related Work

» Principal curve based approaches

[Hastie, Stuetzle, 1989], [Kegl, Kryzak, 2002], [Ozertem, Erdogmus,
20117 ...




Some Related Work

» Principal curve based approaches

[Hastie, Stuetzle, 1989], [Kegl, Kryzak, 2002], [Ozertem, Erdogmus,
20117 ...

» Reeb graph based

[Natali et al., Graphical Models 201 |], [Ge et al.W., NIPS 201 ], [Chazal
etal, DCG 2015]...

This talk: an effective graph reconstruction

algorithm to handle ambient noise



This Talk

Overall Goal:

Using geometric and topological ideas to develop graph
reconstruction algorithms for various settings with theoretical
understanding / guarantees

» Geometric graph reconstruction via discrete Morse + persistence
A motivating example from road-network reconstruction

Algorithms and theoretical understanding
[Wang, Li,W., SIGSPATIAL 2015], [Dey,Wang,W., SIGSPATIAL 2017, SoCG 2018]




A Motivating Application

» Automatic road network reconstruction

Input: GPS trajectories Goal: Road network



Motivation cont

» Reconstruction from satellite images




A Motivating Application

» Automatic road network reconstruction

» Two main challenges:
Noisy trajectories
Non-homogeneous distribution
» Previous methods:
Local information for decision making, sensitive to noise

Often thresholding involved, challenging in handling non-uniform input

Junction nodes identification and connectivity challenging
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nput: GPS trajectories

Goal: Road network




Morse-based Reconstruction

Discrete

. Persistence-
Input: Convert to a Morse based

Large collection density field based

graph

: simplification
extraction

of trajectories p:1 > R

» Persistence-guided (discrete) Morse-based reconstruction
framework for road network reconstruction
» uses global structure behind data; robust against noise, small
gaps, and non-uniformity in data

» conceptually clean, easy to implement; also extension to map
integration / augmentation
»  [Wang, Li,W.,, SIGSPATIAL 2015]

» [Gyulassy, PhD thesis 2008], [Robins et al. 201 | ], [Delgado-Friedrichs et al 2015],
;"'{Sousbie,"ZGHS] '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''



Main Idea

» Assume input is a scalar (density) field
f:1 = R ,where high value of f indicates high signal value

» View graph of f as a terrain (mountain range) on [ X R
I =[0,1]? < R? for the case of road network reconstruction

» Road = mountain ridge
Captured by 1-stable manifold of f




Morse Theory: Smooth Case

» Let f:R? — R be a Morse function

o or o]
0x, 9x,” " 0xy

» Critical points of f: {x € R* | Vf(x) =0}
» An integral line L: (0,1) - R%:

a maximal path in R% whose tangent vectors agree with gradient of f at
every point of the path

» Gradient of f at x:Vf(x) = —

origin/destination at critical points
Dest(L) = lirq L(p)
p—

Ori(L) = lim L(p)
p—0

» 1-stable manifolds
Integral lines ending at (d — 1)-saddles




1-stable Manifold

ma

1-stable manifold (of index d — 1 saddle points) = mountain ridges




Discrete Case

» Smooth case
1-stable manifold from
Morse theory

» Discrete case
Piecewise-linear (PL) approximation?
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Discrete Morse Theory
» [Forman 1998, 2002]

» Combinatorial version of Morse theory
» Many results analogous to classical Morse theory

» Works for cell complexes

» Combinatorial, thus numerically stable

» Algorithmically often easy to handle, especially
simplification



Discrete Gradient Vector Field

» Given a simplicial complex K, a discrete (gradient) vector

(0,7) s.t.o < T (vertex-edge or edge-triangle pair in our case)
» A Morse pairing M(K) of K
A set of discrete vectors s.t. each simplex appears in at most one vector

» A simplex o is critical, if
it does not appear in any pair in M (K)

» AV-path in M(K) N
T, 01, T1, 02, To, o) Tk Op 41 St (07, T;) € M(K)

cyclic: if k > 0,and (041, 79) € M(K)

acyclic (gradient path) otherwise




Discrete Gradient Vector Field

» Given a simplicial complex K, a discrete (gradient) vector

(0,7) s.t.o < T (vertex-edge or edge-triangle pair in our case)
» A Morse pairing M(K) of K
A set of discrete vectors s.t. each simplex appears in at most one vector

» A simplex o is critical, if
it does not appear in any pair in M (K)

» AV-path in M(K)
TO' 01,71,02,Ty, ... ;Tk, O-k_|_1 S.t.(O'i, Ti) - M(I(

cyclic: if k > 0,and (041, 79) € M(K)

acyclic (gradient path)|otherwise
» M(K)idiscrete gradient vector field| '~
if there is no cyclic V-path in M (K)




Discrete Gradient Vector Field

» Discrete Morse function ¢==) discrete gradient vector field

» A discrete GradientVector field = gradient field for Morse functions
critical k-simplex =~ index-k critical point
critical edge ~ saddles for function on R?
1-stable manifolds: edge-triangle V-paths

1-unstable manifolds: vertex-edge V-paths (" valley ridges”)




Simplification via Morse Cancellation

» Morse cancellation operation (to simplify the vector field):
A pair of critical simplices (g, T) can be cancelled

if there is a unique gradient path between them

By reverting that gradient path

canceling (v,, e s, t) not cancellable



» Morse cancellation of critical pairs simplify the discrete
gradient vector fields

which further simplifies 1-(un)stable manifolds

» But which critical pairs should we cancel?

intuitively: should respect input function! Less important ones
corresponding to noise

» Persistence homology induced by the density function to
guide the cancellation of critical pairs

" persistence” capturing importance” of critical pairs
[Edelsbrunner, Letscher, Zomorodian 2002], [Zomorodian, Carlsson 2005], ...



Sublevel-set Persistence — Simplified view
» Input: f:R - R
.
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Sublevel-set Persistence — Simplified view
» Input: f:R - R
o

» Induced persistence pairings

P(f)

(x3,x4),pETs = f(x4) — f(x3)




Sublevel-set Persistence — Simplified view
» Input: f:R - R
o

» Induced persistence pairings

P(f)

(x3,x4),pETs = f(x4) — f(x3)




Sublevel-set Persistence — Simplified view
» Input: f:R - R
o

““““““““““““““““““““““““““““““““““ »Induced persistence pairings

P(f)
(x3,x4), pers = f(xy) — f(x3)

(x5, X5), (X1, Xg), ...




Discrete Case

» A piecewise-linear (PL) function p: |K| — R defined on a
simplicial complex domain K

» Persistence algorithm via lower-star filtration
[Edelsbrunner, Letscher, Zomorodian 2002],

A collection of persistence pairings:
P,(K) = { (0,7)}, where k = dim(o) = dim(7) — 1

0: creator, creating k-th homological features

T: destroyer, killing feature created at o
per(o,T) = p(1) — p(0): life time of this feature
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Main Algorithm

» Input:
» Triangulation K of domain I c R%, function f: K — R, threshold §

» Initialize discrete gradient vector field W on K to be the trivial one

» Step |: persistence computation
» Compute persistence pairings P(K) induced by function —f

» Step 2: Morse simplification

» Simplify W by performing Morse cancellation for all critical pairs from
P(K) with persistence < 0, if possible

» Step 3: collect output

» For all remaining critical edges with persistence > ¢

The algorithm works for any d-dimensional domain I c R¢

but only 2-skeleton of the triangulation K is needed




Results — Road network reconstruction
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Thresholding?
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Comparison




Map Integration
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Map Augmentation




Reconstruction from Satellite Images

» CNN + reconstruction framework




Reconstruction from Satellite Images

» CNN + reconstruction framework




Results — Neuron Reconstruction

» Single neuron reconstruction

DIADAM dataset OP 2



Results — Neuron reconstruction

» Mouse brain LM images from an AAV viral tracer-injection
from Mitra laboratory at CSHL




Great!

But what can we guarantee !



Next

Provide theoretical justification / understanding for the
persistence-guided discrete Morse-based graph
reconstruction framework

» Further simplification of the algorithm/editing strategy

» Reconstruction guarantees under a (simple) noise model

» [Dey,Wang,W, ACM SIGSPATIAL 2017], [Dey,Wang,W., SoCG 2018]




Reconstruction Editing

» Simple strategies to allow adding missing parts
Enforce minima (vertices): allow adding missing free branches

Enforce maxima (triangles): allow adding missing loops

) S = Sl V0 e A A B
adding missing branches adding missing loops




Main Algorithm

» Input:
» Triangulation K of domain I c R%, function f: K — R, threshold §

» Initialize discrete gradient vector field W on K

» Step 1: persistence computation
» Compute persistence pairings P(K) induced by function —f

» Step 3: collect output
» For all remaining critical edges with persistence > &

» collect their 1-unstable manifolds and output



Simplified Algorithms

» Step 2 (Morse simplification) is replaced by

Procedure PerSimpTree(P(K),§)

II := the set of vertex-edge persistence pairs from P = P(K)
2 Set II<s C II to be 1«5 = {(v,e) € II | pers(v, e) < d}

3 T = U(U,J)Eﬂga{a = (uy,ug), Uy, us }

4 return (7)

» No need to cancel edge-triangle critical pair
» No need to check whether cancellation is valid or not

» No explicit cancellation operation is needed !

simply collect all "“negative” edges whose persistence is at most §

Simplified Step 2:
Linear time to collect a set of edges, and they form a spanning forest

that contain all necessary information of discrete gradient field




Simplified Algorithm - cont.

» Step 3 (collecting output) is replaced by:
Procedure Treebased-OutputG(7T)

1 for each critical edge e = (u,v) with pers(e) > § do
2 Let m(u) be the unique path from u to the sink of the tree 7; containing u
3 Define 7(v) similarly; Set G = G U w(u) U w(v) U {e}

No explicit discrete gradient vector field maintained!

Simplified algorithm even easier and faster
[Attali et al 2009], [Bauer et al 2012]

» Theorem

Time complexity of the simplified algorithms is O(n + Time(Per)) where
n is the total number of vertices and edges in K.

This holds for any dimensions.




Provide theoretical understanding / justification for the
persistence-guided discrete Morse-based graph
reconstruction framework

» Further simplification of the algorithm/editing strategy

» [Dey,Wang,W, ACM SIGSPATIAL 2017], [Dey, Wang,W., 2018]



Noise Model

» True graph G c Q := [0, 1]¢
» G¥ < Q:an w-neighborhood of G

such that for (i) any x € G®,d(x,G) < w;and (ii)
G® deformation retracts to G

» A function p: Q) = R is (8, u, w)-approximation of G

if there exists an w-neighborhooad CXAf (£ cn that

p(x) € [B,B + u], forany x €
p(x) €10, u], otherwise

B >2u




Noise Model

» True graph G c Q := [0, 1]¢
» G® < Q:an w-neighborhood of G

such that for (i) any x € G®,d(x,G) < w;and (ii)
G® deformation retracts to G

» A function p: Q) = R is (8, u, w)-approximation of G
if there exists an w-neighborhood G “ of G so that

p(x) € [B,B + u], forany x € G®
p(x) €10, u], otherwise

B >2u

» In discrete case,
K a triangulation of (), G® c K, p defined at vertices of K



Main Results

Theorem (Geometry)

For any dimension d, under our noise model and for
appropriate 8, the output graph G satisfies G € G©.

Theorem (Topology)

For any dimension d, under our noise model and for appropriate
8, the output graph G is homotopy equivalent to G.

Theorem (Topology in 2D)

For d = 2, under our noise model and for appropriate §, there
is a deformation retraction from G¢ to G.
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Proof Ideas

» Suppose true graph G has g independent loops
» Lemma A:

Under the noise model, after §-simplification for appropriate 0,
exactly 1 critical vertex (global minimum), g critical edges and
g critical triangles are left.




Proof Ideas

» Suppose the true graph G has g independent loops
» Lemma A:

Under the noise model, after §-simplification for appropriate 0,
exactly 1 critical vertex (global minimum), g critical edges and
g critical triangles are left.

» Lemma B:

All critical edges are in the region G¢,

and all critical triangles are outside it.




» Each critical triangle ¢

corresponds to a region spanned by triangles reachable from ¢
via discrete gradient paths

» Simplification process

merges such regions




» Each critical triangle ¢
corresponds to a region spanned by triangles reachable from ¢

via discrete gradient paths

» Simplification process

merges such regions

» Lemma C:
In R, at the end of simplification, the boundary of the
g regions corresponding to the remaining critical triangles
form a subset of output graph G.

The associated edge-triangle discrete gradient vectors inside
each region lead to a deformation retraction from G¢ to G.



Remarks

» Noise model simple

based approach may potentially work for this
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However, not for real data

increasing threshold



Remarks

» Noise model simple

» Thresholding-based approach may potentially work for this
model

» However, not for real data




Concluding Remarks

» Explored the power of a discrete Morse+persistence based
framework for graph reconstruction

Application to both 2D (road network) and 3D (neuron
reconstruction)

» Provided theoretical understanding and justification of its
reconstruction ability

» Only a first step!
More general noise models

High dimensional points data input
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