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Introduction
 Graphs naturally occur in many applications
 Hidden space: graph-like structures 
 Simple, non-linear structure behind data

http://www2.iap.fr/users/sousbie/web/html/indexd41d.html



Overall Goal:
Using geometric and topological ideas to develop graph 

reconstruction algorithms for various settings with theoretical 
understanding / guarantees



Some Related Work
 Principal curve based approaches

 [Hastie, Stuetzle, 1989], [Kegl, Kryzak, 2002], [Ozertem,  Erdogmus, 
2011] … 



Some Related Work
 Principal curve based approaches

 [Hastie, Stuetzle, 1989], [Kegl, Kryzak, 2002], [Ozertem,  Erdogmus, 
2011] … 

 Reeb graph based
 [Natali et al., Graphical Models 2011], [Ge et al. W. , NIPS 2011], [Chazal 

et al, DCG 2015]… 

This talk:  an effective graph reconstruction 
algorithm to handle ambient noise



This Talk

 Geometric graph reconstruction via discrete Morse + persistence
 A motivating example from road-network reconstruction

 Algorithms and theoretical understanding 
 [Wang, Li, W., SIGSPATIAL 2015], [Dey, Wang, W., SIGSPATIAL 2017,  SoCG 2018]

Overall Goal:
Using geometric and topological ideas to develop graph 

reconstruction algorithms for various settings with theoretical 
understanding / guarantees



A Motivating Application
 Automatic road network reconstruction

Input:  GPS trajectories Goal:  Road network 



Motivation cont
 Reconstruction from satellite images



Input:  GPS trajectories Goal:  Road network 

A Motivating Application
 Automatic road network reconstruction
 Two main challenges:

 Noisy trajectories
 Non-homogeneous distribution 

 Previous methods:
 Local information for decision making, sensitive to noise
 Often thresholding involved, challenging in handling non-uniform input 
 Junction nodes identification and connectivity challenging



Morse-based Reconstruction

 Persistence-guided (discrete) Morse-based reconstruction 
framework for road network reconstruction 
 uses global structure behind data;  robust against noise, small 

gaps, and non-uniformity in data
 conceptually clean, easy to implement;  also extension to map 

integration / augmentation
 [Wang, Li, W., SIGSPATIAL 2015]

 [Gyulassy, PhD thesis 2008], [Robins et al. 2011], [Delgado-Friedrichs et al 2015], 
[Sousbie, 2015]

Input: 
Large collection 
of trajectories

Convert to a 
density field 
𝜌𝜌: 𝐼𝐼 → 𝑅𝑅

Discrete 
Morse based 

graph 
extraction

Persistence-
based 

simplification+



Main Idea
 Assume input is a scalar (density) field 
 𝑓𝑓: 𝐼𝐼 → 𝑅𝑅 , where high value of 𝑓𝑓 indicates high signal value

 View graph of 𝑓𝑓 as a terrain (mountain range) on 𝐼𝐼 × 𝑅𝑅
 𝐼𝐼 = 0,1 2 ⊂ 𝑅𝑅2 for the case of road network reconstruction

 Road ≈ mountain ridge 
 Captured by 1-stable manifold of 𝑓𝑓



Morse Theory: Smooth Case
 Let 𝑓𝑓: 𝑅𝑅𝑑𝑑 → 𝑅𝑅 be a Morse function 

 Gradient of 𝑓𝑓 at 𝑥𝑥: 𝛻𝛻𝑓𝑓 𝑥𝑥 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕1

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

, … , 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑑𝑑

𝑇𝑇

 Critical points of 𝑓𝑓:  { 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑 ∣ 𝛻𝛻𝑓𝑓 𝑥𝑥 = 0 }
 An integral line 𝐿𝐿: 0, 1 → 𝑅𝑅𝑑𝑑:

 a maximal path in 𝑅𝑅𝑑𝑑 whose tangent vectors agree with gradient of 𝑓𝑓 at 
every point of the path

 origin/destination at critical points
 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐿𝐿 = lim

𝑝𝑝→1
𝐿𝐿(𝑝𝑝)

 𝑂𝑂𝑂𝑂𝑂𝑂 𝐿𝐿 = lim
𝑝𝑝→0

𝐿𝐿 𝑝𝑝

 1-stable manifolds
 Integral lines ending at (𝑑𝑑 − 1)-saddles 

𝑥𝑥



1-stable Manifold

1-stable manifold (of index 𝑑𝑑 − 1 saddle points) ≈ mountain ridges



Discrete Case
 Smooth case

 1-stable manifold from 
Morse theory

 Discrete case
 Piecewise-linear (PL) approximation? 



Discrete Morse Theory
 [Forman 1998, 2002]

 Combinatorial version of Morse theory
 Many results analogous to classical Morse theory
 Works for cell complexes

 Combinatorial, thus numerically stable
 Algorithmically often easy to handle, especially 

simplification



Discrete Gradient Vector Field
 Given a simplicial complex 𝐾𝐾, a discrete (gradient) vector

 (𝜎𝜎, 𝜏𝜏) s.t.𝜎𝜎 < 𝜏𝜏 (vertex-edge or edge-triangle pair in our case)

 A Morse pairing 𝑀𝑀 𝐾𝐾 of 𝐾𝐾
 A set of discrete vectors s.t. each simplex appears in at most one vector 

 A simplex 𝜎𝜎 is critical, if 
 it does not appear in any pair in 𝑀𝑀(𝐾𝐾)

 A V-path in 𝑀𝑀(𝐾𝐾)
 𝜏𝜏0, 𝜎𝜎1, 𝜏𝜏1, 𝜎𝜎2, 𝜏𝜏2, … , 𝜏𝜏𝑘𝑘, 𝜎𝜎𝑘𝑘+1 s.t. 𝜎𝜎𝑖𝑖, 𝜏𝜏𝑖𝑖 ∈ 𝑀𝑀(𝐾𝐾)
 cyclic:  if 𝑘𝑘 > 0, and 𝜎𝜎𝑘𝑘+1, 𝜏𝜏0 ∈ 𝑀𝑀(𝐾𝐾)
 acyclic (gradient path) otherwise



Discrete Gradient Vector Field
 Given a simplicial complex 𝐾𝐾, a discrete (gradient) vector

 (𝜎𝜎, 𝜏𝜏) s.t.𝜎𝜎 < 𝜏𝜏 (vertex-edge or edge-triangle pair in our case)

 A Morse pairing 𝑀𝑀 𝐾𝐾 of 𝐾𝐾
 A set of discrete vectors s.t. each simplex appears in at most one vector 

 A simplex 𝜎𝜎 is critical, if 
 it does not appear in any pair in 𝑀𝑀(𝐾𝐾)

 A V-path in 𝑀𝑀(𝐾𝐾)
 𝜏𝜏0, 𝜎𝜎1, 𝜏𝜏1, 𝜎𝜎2, 𝜏𝜏2, … , 𝜏𝜏𝑘𝑘, 𝜎𝜎𝑘𝑘+1 s.t. 𝜎𝜎𝑖𝑖, 𝜏𝜏𝑖𝑖 ∈ 𝑀𝑀(𝐾𝐾)
 cyclic:  if 𝑘𝑘 > 0, and 𝜎𝜎𝑘𝑘+1, 𝜏𝜏0 ∈ 𝑀𝑀(𝐾𝐾)
 acyclic (gradient path) otherwise

 𝑀𝑀(𝐾𝐾): discrete gradient vector field
 if there is no cyclic V-path in 𝑀𝑀(𝐾𝐾)



Discrete Gradient Vector Field
 Discrete Morse function         discrete gradient vector field

 A discrete Gradient Vector field  ≈ gradient field for Morse functions
 critical k-simplex ≈ index-k critical point
 critical edge ≈ saddles for function on 𝑅𝑅2

 1-stable manifolds: edge-triangle V-paths 
 1-unstable manifolds: vertex-edge V-paths (``valley ridges’’) 



Simplification via Morse Cancellation
 Morse cancellation operation (to simplify the vector field): 
 A pair of critical simplices 〈𝜎𝜎, 𝜏𝜏〉 can be cancelled 

 if there is a unique gradient path between them 
 By reverting that gradient path

canceling 〈𝑣𝑣2, 𝑒𝑒2〉 〈𝑠𝑠, 𝑡𝑡〉 not cancellable



 Morse cancellation of critical pairs simplify the discrete 
gradient vector fields
 which further simplifies 1-(un)stable manifolds

 But which critical pairs should we cancel? 
 intuitively: should respect input function! Less important ones 

corresponding to noise

 Persistence homology induced by the density function to 
guide the cancellation of critical pairs
 ``persistence’’ capturing ``importance’’ of critical pairs
 [Edelsbrunner, Letscher, Zomorodian 2002], [Zomorodian, Carlsson 2005], …



Sublevel-set Persistence – Simplified view
 Input:  𝑓𝑓: 𝑅𝑅 → 𝑅𝑅

𝑓𝑓

𝑎𝑎
𝑓𝑓−1 𝑎𝑎



Sublevel-set Persistence – Simplified view
 Input:  𝑓𝑓: 𝑅𝑅 → 𝑅𝑅

𝑓𝑓

𝑎𝑎
𝐻𝐻∗(𝑓𝑓−1 𝑎𝑎 )



Sublevel-set Persistence – Simplified view
 Input:  𝑓𝑓: 𝑅𝑅 → 𝑅𝑅

𝑓𝑓

𝑎𝑎1 𝑥𝑥1



Sublevel-set Persistence – Simplified view
 Input:  𝑓𝑓: 𝑅𝑅 → 𝑅𝑅

𝑓𝑓

𝑎𝑎1+
𝑥𝑥1



Sublevel-set Persistence – Simplified view
 Input:  𝑓𝑓: 𝑅𝑅 → 𝑅𝑅

𝑓𝑓

𝑎𝑎1+
𝑥𝑥1

𝑥𝑥4
𝑥𝑥3

𝑥𝑥2



Sublevel-set Persistence – Simplified view
 Input:  𝑓𝑓: 𝑅𝑅 → 𝑅𝑅

𝑓𝑓

𝑎𝑎1+
𝑥𝑥1

𝑥𝑥4
𝑥𝑥3

𝑥𝑥2

 Induced persistence pairings 
𝑃𝑃 𝑓𝑓
 𝑥𝑥3, 𝑥𝑥4 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑓𝑓 𝑥𝑥4 − 𝑓𝑓 𝑥𝑥3



Sublevel-set Persistence – Simplified view
 Input:  𝑓𝑓: 𝑅𝑅 → 𝑅𝑅

𝑓𝑓

𝑎𝑎1+
𝑥𝑥1

𝑥𝑥4
𝑥𝑥3

𝑥𝑥2

 Induced persistence pairings 
𝑃𝑃 𝑓𝑓
 𝑥𝑥3, 𝑥𝑥4 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑓𝑓 𝑥𝑥4 − 𝑓𝑓 𝑥𝑥3
 𝑥𝑥2, 𝑥𝑥5

𝑥𝑥5



Sublevel-set Persistence – Simplified view
 Input:  𝑓𝑓: 𝑅𝑅 → 𝑅𝑅

𝑓𝑓

𝑎𝑎1+
𝑥𝑥1

𝑥𝑥4
𝑥𝑥3

𝑥𝑥2

 Induced persistence pairings 
𝑃𝑃 𝑓𝑓
 𝑥𝑥3, 𝑥𝑥4 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑓𝑓 𝑥𝑥4 − 𝑓𝑓 𝑥𝑥3
 𝑥𝑥2, 𝑥𝑥5 , 𝑥𝑥1, 𝑥𝑥6 , …

𝑥𝑥5



Discrete Case
 A piecewise-linear (PL) function 𝜌𝜌: 𝐾𝐾 → 𝑅𝑅 defined on a 

simplicial complex domain 𝐾𝐾
 Persistence algorithm via lower-star filtration

 [Edelsbrunner, Letscher, Zomorodian 2002],

 A collection of persistence pairings: 
 𝑃𝑃𝜌𝜌 𝐾𝐾 = { 𝜎𝜎, 𝜏𝜏 }, where k = dim 𝜎𝜎 = dim 𝜏𝜏 − 1

 𝜎𝜎: creator, creating 𝑘𝑘-th homological features
 𝜏𝜏: destroyer, killing feature created at 𝜎𝜎
 𝑝𝑝𝑝𝑝𝑝𝑝 𝜎𝜎, 𝜏𝜏 = 𝜌𝜌 𝜏𝜏 − 𝜌𝜌(𝜎𝜎): life time of this feature

Intuitively, pairs of simplices with positive persistence 
corresponding to persistence pairing of critical points in 

the smooth case. 



Main Algorithm
 Input: 

 Triangulation 𝐾𝐾 of domain 𝐼𝐼 ⊂ 𝑅𝑅𝑑𝑑 , function 𝑓𝑓:𝐾𝐾 → 𝑅𝑅, threshold 𝛿𝛿

 Initialize discrete gradient vector field 𝑊𝑊 on 𝐾𝐾 to be the trivial one

 Step 1:   persistence computation
 Compute persistence pairings 𝑃𝑃(𝐾𝐾) induced by function −𝑓𝑓

 Step 2:   Morse simplification
 Simplify 𝑊𝑊 by performing Morse cancellation for all critical pairs from 
𝑃𝑃(𝐾𝐾) with persistence ≤ 𝛿𝛿, if possible

 Step 3:   collect output 
 For all remaining critical edges with persistence > 𝛿𝛿
 collect their 1-unstable manifolds and output The algorithm works for any 𝑑𝑑-dimensional domain 𝐼𝐼 ⊂ 𝑅𝑅𝑑𝑑

but only 2-skeleton of the triangulation 𝐾𝐾 is needed



Results – Road network reconstruction

BerlinBeijingAthens



Effect of Simplification

Berlin, 27189 trajectories



Thresholding? 

increasing threshold



Comparison



Map Integration

+



Map Augmentation



Reconstruction from Satellite Images
 CNN + reconstruction framework



Reconstruction from Satellite Images
 CNN + reconstruction framework



Results – Neuron Reconstruction
 Single neuron reconstruction 

DIADAM dataset OP 2 



Results – Neuron reconstruction 
 Mouse brain LM images from an AAV viral tracer-injection

 from Mitra laboratory at CSHL



Great! 

But what can we guarantee ? 



Next

 Further simplification of the algorithm/editing strategy
 Reconstruction guarantees under a (simple) noise model 

 [Dey, Wang, W,  ACM SIGSPATIAL 2017], [Dey, Wang, W.,  SoCG 2018]

Provide theoretical justification / understanding for the 
persistence-guided discrete Morse-based graph 

reconstruction framework 



Reconstruction Editing 
 Simple strategies to allow adding missing parts 
 Enforce minima (vertices):   allow adding missing free branches
 Enforce maxima (triangles):  allow adding missing loops  

adding missing branches adding missing loops



 Input: 
 Triangulation 𝐾𝐾 of domain 𝐼𝐼 ⊂ 𝑅𝑅𝑑𝑑 , function 𝑓𝑓:𝐾𝐾 → 𝑅𝑅, threshold 𝛿𝛿

 Initialize discrete gradient vector field 𝑊𝑊 on 𝐾𝐾

 Step 1:   persistence computation
 Compute persistence pairings 𝑃𝑃(𝐾𝐾) induced by function −𝑓𝑓

 Step 2:   Morse simplification
 Simplify 𝑊𝑊 by performing Morse cancellation for all critical pairs from 
𝑃𝑃(𝐾𝐾) with persistence ≤ 𝛿𝛿, if possible

 Step 3:   collect output 
 For all remaining critical edges with persistence > 𝛿𝛿
 collect their 1-unstable manifolds and output 

Main Algorithm



Simplified Algorithms
 Step 2 (Morse simplification) is replaced by

 No need to cancel edge-triangle critical pair
 No need to check whether cancellation is valid or not
 No explicit cancellation operation is needed ! 

 simply collect all ``negative’’ edges whose persistence is at most 𝛿𝛿

Simplified Step 2:  
Linear time to collect a set of edges, and they form a spanning forest 

that contain all necessary information of discrete gradient field



Simplified Algorithm – cont.
 Step 3 (collecting output) is replaced by: 

 No explicit discrete gradient vector field maintained!
 Simplified algorithm even easier and faster

 [Attali et al 2009], [Bauer et al 2012]

 Theorem 
Time complexity of the simplified algorithms is 𝑂𝑂 𝑛𝑛 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃 where 
𝑛𝑛 is the total number of vertices and edges in 𝐾𝐾. 

This holds for any dimensions. 



Next

 Further simplification of the algorithm/editing strategy
 Reconstruction guarantees under a (simple) noise model 

 [Dey, Wang, W,  ACM SIGSPATIAL 2017], [Dey, Wang, W.,  2018]

Provide theoretical understanding / justification for the 
persistence-guided discrete Morse-based graph 

reconstruction framework 



Noise Model
 True graph 𝐺𝐺 ⊂ Ω ≔ 0, 1 𝑑𝑑

 𝐺𝐺𝜔𝜔 ⊂ Ω: an 𝜔𝜔-neighborhood of 𝐺𝐺
 such that for (i) any 𝑥𝑥 ∈ 𝐺𝐺𝜔𝜔, 𝑑𝑑 𝑥𝑥, 𝐺𝐺 ≤ 𝜔𝜔; and (ii) 
𝐺𝐺𝜔𝜔 deformation retracts to 𝐺𝐺

 A function 𝜌𝜌: Ω → 𝑅𝑅 is (𝛽𝛽, 𝜇𝜇, 𝜔𝜔)-approximation of 𝐺𝐺
 if there exists an 𝜔𝜔-neighborhood 𝐺𝐺𝜔𝜔of 𝐺𝐺 so that 

 𝜌𝜌 𝑥𝑥 ∈ [𝛽𝛽, 𝛽𝛽 + 𝜇𝜇],  for any 𝑥𝑥 ∈ 𝐺𝐺𝜔𝜔

 𝜌𝜌 𝑥𝑥 ∈ 0, 𝜇𝜇 ,  otherwise
 𝛽𝛽 > 2𝜇𝜇



Noise Model
 True graph 𝐺𝐺 ⊂ Ω ≔ 0, 1 𝑑𝑑

 𝐺𝐺𝜔𝜔 ⊂ Ω: an 𝜔𝜔-neighborhood of 𝐺𝐺
 such that for (i) any 𝑥𝑥 ∈ 𝐺𝐺𝜔𝜔, 𝑑𝑑 𝑥𝑥, 𝐺𝐺 ≤ 𝜔𝜔; and (ii) 
𝐺𝐺𝜔𝜔 deformation retracts to 𝐺𝐺

 A function 𝜌𝜌: Ω → 𝑅𝑅 is (𝛽𝛽, 𝜇𝜇, 𝜔𝜔)-approximation of 𝐺𝐺
 if there exists an 𝜔𝜔-neighborhood 𝐺𝐺𝜔𝜔of 𝐺𝐺 so that 

 𝜌𝜌 𝑥𝑥 ∈ [𝛽𝛽, 𝛽𝛽 + 𝜇𝜇],  for any 𝑥𝑥 ∈ 𝐺𝐺𝜔𝜔

 𝜌𝜌 𝑥𝑥 ∈ 0, 𝜇𝜇 ,  otherwise
 𝛽𝛽 > 2𝜇𝜇

 In discrete case, 
 𝐾𝐾 a triangulation of Ω, 𝐺𝐺𝜔𝜔 ⊂ 𝐾𝐾, 𝜌𝜌 defined at vertices of 𝐾𝐾



Main Results

Theorem (Geometry)
For any dimension 𝑑𝑑, under our noise model and for 

appropriate 𝛿𝛿, the output graph �𝐺𝐺 satisfies �𝐺𝐺 ⊂ 𝐺𝐺𝜔𝜔. 

Theorem (Topology)
For any dimension 𝑑𝑑, under our noise model and for appropriate 

𝛿𝛿, the output graph �𝐺𝐺 is homotopy equivalent to 𝐺𝐺. 

Theorem (Topology in 2D)
For 𝑑𝑑 = 2, under our noise model and for appropriate 𝛿𝛿, there 

is a deformation retraction from 𝐺𝐺𝜔𝜔 to �𝐺𝐺. 





𝛿𝛿 = 0.0001 𝛿𝛿 = 5 𝛿𝛿 = 20



Proof Ideas
 Suppose true graph 𝐺𝐺 has 𝑔𝑔 independent loops
 Lemma A:
 Under the noise model, after 𝛿𝛿-simplification for appropriate 𝛿𝛿, 

exactly 1 critical vertex (global minimum), 𝑔𝑔 critical edges and 
𝑔𝑔 critical triangles are left. 



Proof Ideas
 Suppose the true graph 𝐺𝐺 has 𝑔𝑔 independent loops
 Lemma A:
 Under the noise model, after 𝛿𝛿-simplification for appropriate 𝛿𝛿, 

exactly 1 critical vertex (global minimum), 𝑔𝑔 critical edges and 
𝑔𝑔 critical triangles are left. 

 Lemma B:
 All critical edges are in the region 𝐺𝐺𝜔𝜔,
 and all critical triangles are outside it.



 Each critical triangle 𝑡𝑡
 corresponds to a region spanned by triangles reachable from 𝑡𝑡

via discrete gradient paths

 Simplification process
 merges such regions



 Each critical triangle 𝑡𝑡
 corresponds to a region spanned by triangles reachable from 𝑡𝑡

via discrete gradient paths

 Simplification process
 merges such regions

 Lemma C: 
 In 𝑅𝑅2, at the end of simplification, the boundary of the 
𝑔𝑔 regions corresponding to the remaining critical triangles 
form a subset of output graph �𝐺𝐺.

 The associated edge-triangle discrete gradient vectors inside 
each region lead to a deformation retraction from 𝐺𝐺𝜔𝜔 to �𝐺𝐺.  



Remarks
 Noise model simple
 Thresholding-based approach may potentially work for this 

model 
 However, not for real data 

increasing threshold



Remarks
 Noise model simple
 Thresholding-based approach may potentially work for this 

model 
 However, not for real data 

decreasing thresholds



Concluding Remarks
 Explored the power of a discrete Morse+persistence based 

framework for graph reconstruction
 Application to both 2D (road network) and 3D (neuron 

reconstruction)

 Provided theoretical understanding and justification of its 
reconstruction ability

 Only a first step!
 More general noise models
 High dimensional points data input 
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