Graph Reconstruction via Discrete Morse Theory

Yusu Wang

Computer Science and Engineering Dept
The Ohio State University

Approximation Theory and Machine Learning Conference 2018

Introduction

- Graphs naturally occur in many applications
 - ▶ Hidden space: graph-like structures
 - ▶ Simple, non-linear structure behind data

http://www2.iap.fr/users/sousbie/web/html/indexd41d.html

Overall Goal:

Using geometric and topological ideas to develop graph reconstruction algorithms for various settings with theoretical understanding / guarantees

Some Related Work

- Principal curve based approaches
 - [Hastie, Stuetzle, 1989], [Kegl, Kryzak, 2002], [Ozertem, Erdogmus, 2011] ...

Some Related Work

- Principal curve based approaches
 - [Hastie, Stuetzle, 1989], [Kegl, Kryzak, 2002], [Ozertem, Erdogmus, 2011] ...
- Reeb graph based
 - [Natali et al., Graphical Models 2011], [Ge et al.W., NIPS 2011], [Chazal et al, DCG 2015]...

This Talk

Overall Goal:

Using geometric and topological ideas to develop graph reconstruction algorithms for various settings with theoretical understanding / guarantees

- Geometric graph reconstruction via discrete Morse + persistence
 - A motivating example from road-network reconstruction
 - Algorithms and theoretical understanding
 - [Wang, Li, W., SIGSPATIAL 2015], [Dey, Wang, W., SIGSPATIAL 2017, SoCG 2018]

A Motivating Application

Automatic road network reconstruction

Motivation cont

▶ Reconstruction from satellite images

A Motivating Application

- Automatic road network reconstruction
- ▶ Two main challenges:
 - Noisy trajectories
 - Non-homogeneous distribution
- Previous methods:
 - Local information for decision making, sensitive to noise
 - Often thresholding involved, challenging in handling non-uniform input
 - Junction nodes identification and connectivity challenging

Morse-based Reconstruction

- Persistence-guided (discrete) Morse-based reconstruction framework for road network reconstruction
 - uses global structure behind data; robust against noise, small gaps, and non-uniformity in data
 - conceptually clean, easy to implement; also extension to map integration / augmentation
 - [Wang, Li, W., SIGSPATIAL 2015]
- [Gyulassy, PhD thesis 2008], [Robins et al. 2011], [Delgado-Friedrichs et al 2015], [Sousbie, 2015]

Main Idea

- Assume input is a scalar (density) field
 - $f: I \to R$, where high value of f indicates high signal value
- View graph of f as a terrain (mountain range) on $I \times R$
 - I = $[0,1]^2 \subset R^2$ for the case of road network reconstruction
- ▶ Road ≈ mountain ridge
 - ▶ Captured by 1-stable manifold of *f*

Morse Theory: Smooth Case

- Let $f: \mathbb{R}^d \to \mathbb{R}$ be a Morse function
- ▶ Gradient of f at x: $\nabla f(x) = -\left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_d}\right]^T$
- ▶ Critical points of f: { $x \in R^d \mid \nabla f(x) = 0$ }
- ▶ An integral line $L: (0,1) \rightarrow \mathbb{R}^d$:
 - lack a maximal path in \mathbb{R}^d whose tangent vectors agree with gradient of f at every point of the path
 - origin/destination at critical points
 - $Dest(L) = \lim_{p \to 1} L(p)$
 - $Dri(L) = \lim_{p \to 0} L(p)$
- ▶ 1-stable manifolds
 - Integral lines ending at (d-1)-saddles

1-stable Manifold

Discrete Case

Smooth case

1-stable manifold from Morse theory

Discrete case

Piecewise-linear (PL) approximation?

Discrete Morse Theory

- [Forman 1998, 2002]
- Combinatorial version of Morse theory
- Many results analogous to classical Morse theory
- Works for cell complexes
- Combinatorial, thus numerically stable
- Algorithmically often easy to handle, especially simplification

Discrete Gradient Vector Field

- Given a simplicial complex K, a discrete (gradient) vector
 - \bullet (σ, τ) s.t. $\sigma < \tau$ (vertex-edge or edge-triangle pair in our case)
- ▶ A Morse pairing M(K) of K
 - A set of discrete vectors s.t. each simplex appears in at most one vector
- A simplex σ is critical, if
 - \blacktriangleright it does not appear in any pair in M(K)
- \blacktriangleright A V-path in M(K)
 - $\tau_0, \sigma_1, \tau_1, \sigma_2, \tau_2, \dots, \tau_k, \sigma_{k+1} \text{ s.t. } (\sigma_i, \tau_i) \in M(K)$
 - cyclic: if k > 0, and $(\sigma_{k+1}, \tau_0) \in M(K)$
 - acyclic (gradient path) otherwise

Discrete Gradient Vector Field

- Given a simplicial complex K, a discrete (gradient) vector
 - \bullet (σ, τ) s.t. $\sigma < \tau$ (vertex-edge or edge-triangle pair in our case)
- ▶ A Morse pairing M(K) of K
 - A set of discrete vectors s.t. each simplex appears in at most one vector
- A simplex σ is critical, if
 - it does not appear in any pair in M(K)
- \blacktriangleright A V-path in M(K)
 - $\tau_0, \sigma_1, \tau_1, \sigma_2, \tau_2, \dots, \tau_k, \sigma_{k+1} \text{ s.t.} (\sigma_i, \tau_i) \in M(K)$
 - cyclic: if k > 0, and $(\sigma_{k+1}, \tau_0) \in M(K)$
 - acyclic (gradient path) otherwise
- M(K): discrete gradient vector field
 - if there is no cyclic V-path in M(K)

Discrete Gradient Vector Field

- Discrete Morse function discrete gradient vector field
- ▶ A discrete Gradient Vector field \approx gradient field for Morse functions
 - ightharpoonup critical k-simplex pprox index-k critical point
 - critical edge \approx saddles for function on R^2
 - ▶ 1-stable manifolds: edge-triangle V-paths
 - 1-unstable manifolds: vertex-edge V-paths (``valley ridges")

Simplification via Morse Cancellation

- Morse cancellation operation (to simplify the vector field):
 - A pair of critical simplices $\langle \sigma, \tau \rangle$ can be cancelled
 - if there is a unique gradient path between them
 - By reverting that gradient path

- Morse cancellation of critical pairs simplify the discrete gradient vector fields
 - which further simplifies 1-(un)stable manifolds
- But which critical pairs should we cancel?
 - intuitively: should respect input function! Less important ones corresponding to noise
- Persistence homology induced by the density function to guide the cancellation of critical pairs
 - 'persistence' capturing 'importance' of critical pairs
 - ▶ [Edelsbrunner, Letscher, Zomorodian 2002], [Zomorodian, Carlsson 2005], ...

Discrete Case

- ▶ A piecewise-linear (PL) function $\rho: |K| \to R$ defined on a simplicial complex domain K
- Persistence algorithm via lower-star filtration
 - [Edelsbrunner, Letscher, Zomorodian 2002],
 - A collection of persistence pairings:
 - $P_{\rho}(K) = \{ (\sigma, \tau) \}, \text{ where } k = \dim(\sigma) = \dim(\tau) 1$
 - $m{\sigma}$: creator, creating k-th homological features
 - ightarrow au: destroyer, killing feature created at σ
 - $per(\sigma, \tau) = \rho(\tau) \rho(\sigma)$: life time of this feature

Intuitively, pairs of simplices with positive persistence corresponding to persistence pairing of critical points in the smooth case.

Main Algorithm

- Input:
 - ▶ Triangulation K of domain $I \subset \mathbb{R}^d$, function $f: K \to \mathbb{R}$, threshold δ
- Initialize discrete gradient vector field W on K to be the trivial one
- Step I: persistence computation
 - ▶ Compute persistence pairings P(K) induced by function -f
- Step 2: Morse simplification
 - Simplify W by performing Morse cancellation for all critical pairs from P(K) with persistence $\leq \delta$, if possible
- Step 3: collect output
 - lacktriangleright For all remaining critical edges with persistence $>\delta$

The algorithm works for any d-dimensional domain $I \subseteq R^d$ but only 2-skeleton of the triangulation K is needed

Results – Road network reconstruction

Effect of Simplification

Berlin, 27189 trajectories

Thresholding?

increasing threshold

Comparison

Map Integration

Map Augmentation

Reconstruction from Satellite Images

► CNN + reconstruction framework

Reconstruction from Satellite Images

► CNN + reconstruction framework

Results – Neuron Reconstruction

Single neuron reconstruction

Results – Neuron reconstruction

▶ Mouse brain LM images from an AAV viral tracer-injection

from Mitra laboratory at CSHL

Great!

But what can we guarantee?

Next

Provide theoretical justification / understanding for the persistence-guided discrete Morse-based graph reconstruction framework

- Further simplification of the algorithm/editing strategy
- Reconstruction guarantees under a (simple) noise model
- [Dey, Wang, W, ACM SIGSPATIAL 2017], [Dey, Wang, W., SoCG 2018]

Reconstruction Editing

- Simple strategies to allow adding missing parts
 - ▶ Enforce minima (vertices): allow adding missing free branches
 - ▶ Enforce maxima (triangles): allow adding missing loops

Main Algorithm

- Input:
 - ▶ Triangulation K of domain $I \subset \mathbb{R}^d$, function $f: K \to \mathbb{R}$, threshold δ
- Initialize discrete gradient vector field W on K
- ▶ Step 1: persistence computation
 - Compute persistence pairings P(K) induced by function -f
- Step 2: Morse simplification
 - Simplify W by performing Morse cancellation for all critical pairs from P(K) with persistence $\leq \delta$, if possible
- Step 3: collect output
 - lacktriangleright For all remaining critical edges with persistence $>\delta$
 - collect their 1-unstable manifolds and output

Simplified Algorithms

▶ Step 2 (Morse simplification) is replaced by

```
Procedure PerSimpTree(P(K), \delta)

1  \Pi := \text{the set of vertex-edge persistence pairs from } P = P(K)

2  \text{Set } \Pi_{\leq \delta} \subseteq \Pi \text{ to be } \Pi_{\leq \delta} = \{(v, e) \in \Pi \mid \text{pers}(v, e) \leq \delta\}

3  \mathcal{T} := \bigcup_{(v, \sigma) \in \Pi_{\leq \delta}} \{\sigma = \langle u_1, u_2 \rangle, u_1, u_2\}

4  \text{return } (\mathcal{T})
```

- No need to cancel edge-triangle critical pair
- No need to check whether cancellation is valid or not
- No explicit cancellation operation is needed!
 - ightharpoonup simply collect all ''negative'' edges whose persistence is at most δ

Simplified Step 2:

Linear time to collect a set of edges, and they form a spanning forest that contain all necessary information of discrete gradient field

Simplified Algorithm – cont.

Step 3 (collecting output) is replaced by:

- No explicit discrete gradient vector field maintained!
- Simplified algorithm even easier and faster
 - ▶ [Attali et al 2009], [Bauer et al 2012]

Theorem

Time complexity of the simplified algorithms is O(n + Time(Per)) where n is the total number of vertices and edges in K.

This holds for any dimensions.

Next

Provide theoretical understanding / justification for the persistence-guided discrete Morse-based graph reconstruction framework

- Further simplification of the algorithm/editing strategy
- Reconstruction guarantees under a (simple) noise model
- [Dey, Wang, W, ACM SIGSPATIAL 2017], [Dey, Wang, W., 2018]

Noise Model

- ▶ True graph $G \subset \Omega \coloneqq [0,1]^d$
- ▶ $G^{\omega} \subset \Omega$: an ω -neighborhood of G
 - such that for (i) any $x \in G^{\omega}$, $d(x, G) \le \omega$; and (ii) G^{ω} deformation retracts to G
- ▶ A function ρ : $\Omega \to R$ is (β, μ, ω) -approximation of G

• if there exists an ω -neighborhand C^{ω} of C so that

- $\rho(x) \in [\beta, \beta + \mu]$, for any $x \in$
- $\rho(x) \in [0, \mu]$, otherwise
- $\beta > 2\mu$

Noise Model

- ▶ True graph $G \subset \Omega \coloneqq [0,1]^d$
- ▶ $G^{\omega} \subset \Omega$: an ω -neighborhood of G
 - such that for (i) any $x \in G^{\omega}$, $d(x, G) \le \omega$; and (ii) G^{ω} deformation retracts to G
- ▶ A function ρ : $\Omega \to R$ is (β, μ, ω) -approximation of G
 - if there exists an ω -neighborhood G^{ω} of G so that
 - $\rho(x) \in [\beta, \beta + \mu], \text{ for any } x \in G^{\omega}$
 - $\rho(x) \in [0, \mu]$, otherwise
 - $\beta > 2\mu$

- In discrete case,
 - \blacktriangleright K a triangulation of Ω , $G^{\omega} \subset K$, ρ defined at vertices of K

Main Results

Theorem (Geometry)

For any dimension d, under our noise model and for appropriate δ , the output graph \hat{G} satisfies $\hat{G} \subset G^{\omega}$.

Theorem (Topology)

For any dimension d, under our noise model and for appropriate δ , the output graph \hat{G} is homotopy equivalent to G.

Theorem (Topology in 2D)

For d=2, under our noise model and for appropriate δ , there is a deformation retraction from G^{ω} to \widehat{G} .

$$\delta = 5$$

$$\delta = 20$$

Proof Ideas

- lacktriangle Suppose true graph G has g independent loops
- Lemma A:
 - Under the noise model, after δ -simplification for appropriate δ , exactly 1 critical vertex (global minimum), g critical edges and g critical triangles are left.

Proof Ideas

- lacktriangle Suppose the true graph G has g independent loops
- Lemma A:
 - Under the noise model, after δ -simplification for appropriate δ , exactly 1 critical vertex (global minimum), g critical edges and g critical triangles are left.

Lemma B:

- \blacktriangleright All critical edges are in the region G^{ω} ,
- and all critical triangles are outside it.

• Each critical triangle t

lacktriangleright corresponds to a region spanned by triangles reachable from t via discrete gradient paths

Simplification process

merges such regions

• Each critical triangle t

 \triangleright corresponds to a region spanned by triangles reachable from t

via discrete gradient paths

Simplification process

merges such regions

Lemma C:

- In R^2 , at the end of simplification, the boundary of the g regions corresponding to the remaining critical triangles form a subset of output graph \hat{G} .
- The associated edge-triangle discrete gradient vectors inside each region lead to a deformation retraction from G^{ω} to \widehat{G} .

Remarks

Noise model simple

- Thresholding-based approach may potentially work for this model
- ▶ However, not for real data

increasing threshold

Remarks

Noise model simple

- Thresholding-based approach may potentially work for this model
- ▶ However, not for real data

decreasing thresholds

Concluding Remarks

- Explored the power of a discrete Morse+persistence based framework for graph reconstruction
 - Application to both 2D (road network) and 3D (neuron reconstruction)
- Provided theoretical understanding and justification of its reconstruction ability

- Only a first step!
 - More general noise models
 - ▶ High dimensional points data input

THANK YOU! YOU!