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90 CHAPTER 1 First-Order Differential Equations

31. Consider the general first-order linear differential
equation

dy

dx
+ p(x)y = q(x), (1.9.25)

wherep(x) andq(x) are continuous functions on some
interval (a, b).

(a) Rewrite Equation (1.9.25) in differential form,
and show that an integrating factor for the result-
ing equation is

I (x) = e
∫
p(x)dx. (1.9.26)

(b) Show that the general solution to Equation
(1.9.25) can be written in the form

y(x) = I−1
{∫ x

I (t)q(t) dt + c
}
,

where I is given in Equation (1.9.26), and c is an
arbitrary constant.

1.10 Numerical Solution to First-Order Differential Equations

So far in this chapter we have investigated first-order differential equations geometrically
via slope fields, and analytically by trying to construct exact solutions to certain types of
differential equations. Certainly, for most first-order differential equations, it simply is
not possible to find analytic solutions, since they will not fall into the few classes for which
solution techniques are available. Our final approach to analyzing first-order differential
equations is to look at the possibility of constructing a numerical approximation to the
unique solution to the initial-value problem

dy

dx
= f (x, y), y(x0) = y0. (1.10.1)

We consider three techniques that give varying levels of accuracy. In each case, we
generate a sequence of approximations y1, y2, . . . to the value of the exact solution at
the points x1, x2, . . . , where xn+1 = xn + h, n = 0, 1, . . . , and h is a real number.
We emphasize that numerical methods do not generate a formula for the solution to the
differential equation. Rather they generate a sequence of approximations to the value of
the solution at specified points. Furthermore, if we use a sufficient number of points, then
by plotting the points (xi, yi) and joining them with straight-line segments, we are able to
obtain an overall approximation to the solution curve corresponding to the solution of the
given initial-value problem. This is how the approximate solution curves were generated
in the preceding sections via the computer algebra system Maple. There are many subtle
ideas associated with constructing numerical solutions to initial-value problems that are
beyond the scope of this text. Indeed, a full discussion of the application of numerical
methods to differential equations is best left for a future course in numerical analysis.

Euler’s Method
Suppose we wish to approximate the solution to the initial-value problem (1.10.1) at
x = x1 = x0 + h, where h is small. The idea behind Euler’s method is to use the
tangent line to the solution curve through (x0, y0) to obtain such an approximation. (See
Figure 1.10.1.)

The equation of the tangent line through (x0, y0) is

y(x) = y0 +m(x − x0),

wherem is the slope of the curve at (x0, y0). From Equation (1.10.1),m = f (x0, y0), so

y(x) = y0 + f (x0, y0)(x − x0).
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Figure 1.10.1: Euler’s method for approximating the solution to the initial-value problem
dy/dx = f (x, y), y(x0) = y0.

Setting x = x1 in this equation yields the Euler approximation to the exact solution at
x1, namely,

y1 = y0 + f (x0, y0)(x1 − x0),

which we write as

y1 = y0 + hf (x0, y0).

Now suppose we wish to obtain an approximation to the exact solution to the initial-
value problem (1.10.1) at x2 = x1 + h. We can use the same idea, except we now use
the tangent line to the solution curve through (x1, y1). From (1.10.1), the slope of this
tangent line is f (x1, y1), so that the equation of the required tangent line is

y(x) = y1 + f (x1, y1)(x − x1).

Setting x = x2 yields the approximation

y2 = y1 + hf (x1, y1),

where we have substituted for x2 − x1 = h, to the solution to the initial-value problem
at x = x2. Continuing in this manner, we determine the sequence of approximations

yn+1 = yn + hf (xn, yn), n = 0, 1, . . .

to the solution to the initial-value problem (1.10.1) at the points xn+1 = xn + h.
In summary, Euler’s method for approximating the solution to the initial-value problem

y′ = f (x, y), y(x0) = y0

at the points xn+1 = x0 + nh (n = 0, 1, . . . ) is

yn+1 = yn + hf (xn, yn), n = 0, 1, . . . . (1.10.2)
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92 CHAPTER 1 First-Order Differential Equations

Example 1.10.1 Consider the initial-value problem

y′ = y − x, y(0) = 1
2 .

Use Euler’s method with (a) h = 0.1 and (b) h = 0.05 to obtain an approximation to
y(1). Given that the exact solution to the initial-value problem is

y(x) = x + 1− 1
2e
x,

compare the errors in the two approximations to y(1).

Solution: In this problem we have

f (x, y) = y − x, x0 = 0, y0 = 1
2 .

(a) Setting h = 0.1 in (1.10.2) yields

yn+1 = yn + 0.1(yn − xn).
Hence,

y1 = y0 + 0.1(y0 − x0) = 0.5+ 0.1(0.5− 0) = 0.55,
y2 = y1 + 0.1(y1 − x1) = 0.55+ 0.1(0.55− 0.1) = 0.595.

Continuing in this manner, we generate the approximations listed in Table 1.10.1,
where we have rounded the calculations to six decimal places.

n xn yn Exact Solution Absolute Error

1 0.1 0.55 0.547414 0.002585
2 0.2 0.595 0.589299 0.005701
3 0.3 0.6345 0.625070 0.009430
4 0.4 0.66795 0.654088 0.013862
5 0.5 0.694745 0.675639 0.019106
6 0.6 0.714219 0.688941 0.025278
7 0.7 0.725641 0.693124 0.032518
8 0.8 0.728205 0.687229 0.040976
9 0.9 0.721026 0.670198 0.050828

10 1.0 0.703129 0.640859 0.062270

Table 1.10.1: The results of applying Euler’s method with h = 0.1 to the initial-value problem
in Example 1.10.1.

We have also listed the values of the exact solution and the absolute value of the
error. In this case, the approximation to y(1) is y10 = 0.703129, with an absolute
error of

|y(1)− y10| = 0.062270. (1.10.3)

(b) When h = 0.05, Euler’s method gives

yn+1 = yn + 0.05(yn − xn), n = 0, 1, . . . , 19,

which generates the approximations given in Table 1.10.2, where we have listed
only every other intermediate approximation. We see that the approximation to
y(1) is

y20 = 0.673351
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1.10 Numerical Solution to First-Order Differential Equations 93

and that the absolute error in this approximation is

|y(1)− y20| = 0.032492.

n xn yn Exact Solution Absolute Error

2 0.1 0.54875 0.547414 0.001335
4 0.2 0.592247 0.589299 0.002948
6 0.3 0.629952 0.625070 0.004881
8 0.4 0.661272 0.654088 0.007185

10 0.5 0.685553 0.675639 0.009913
12 0.6 0.702072 0.688941 0.013131
14 0.7 0.710034 0.693124 0.016910
16 0.8 0.708563 0.687229 0.021333
18 0.9 0.696690 0.670198 0.026492
20 1.0 0.686525 0.640859 0.032492

Table 1.10.2: The results of applying Euler’s method with h = 0.05 to the initial-value
problem in Example 1.10.1.

0.2 0.4 0.6 0.8 1

0.55

0.6

0.65

0.7

x

y

Figure 1.10.2: The exact solution to the initial-value problem considered in Example 1.10.1
and the two approximations obtained using Euler’s method.

Comparing this with (1.10.3), we see that the smaller step size has led to a better
approximation. In fact, it has almost halved the error at y(1). In Figure 1.10.2 we have
plotted the exact solution and the Euler approximations just obtained. �

In the preceding example we saw that halving the step size had the effect of essen-
tially halving the error. However, even then the accuracy was not as good as we probably
would have liked. Of course we could just keep decreasing the step size (provided we
did not take h to be so small that round-off errors started to play a role) to increase the
accuracy, but then the number of steps we would have to take would make the calcula-
tions very cumbersome. A better approach is to derive methods that have a higher order
of accuracy. We will consider two such methods.
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94 CHAPTER 1 First-Order Differential Equations

Modified Euler Method (Heun’s Method)
The method that we consider here is an example of what is called a predictor-corrector
method. The idea is to use the formula from Euler’s method to obtain a first approxima-
tion to the solution y(xn+1). We denote this approximation by y∗n+1, so that

y∗n+1 = yn + hf (xn, yn).
We now improve (or “correct”) this approximation by once more applying Euler’s
method. But this time, we use the average of the slopes of the solution curves through
(xn, yn) and (xn+1, y

∗
n+1). This gives

yn+1 = yn + 1
2h[f (xn, yn)+ f (xn+1, y

∗
n+1)].

As illustrated in Figure 1.10.3 for the case n = 1, we can interpret the modified Euler
approximations as arising from first stepping to the point

(x1, y(x1))

(x1, y1)

(x1, y*1)

(x0, y0)
P

Exact solution
to the IVP

(x0 � h/2, y0 � hf(x0, y0)/2)

h/2

x0 x0 � h/2 x1
x

Modified Euler
approximation at x � x1

Euler approximation
at x � x1

Tangent line to solution
curve through (x1, y*1)

y

Figure 1.10.3: Derivation of the first step in the modified Euler method.

P

(
xn + h

2
, yn + hf (xn, yn)

2

)
along the tangent line to the solution curve through (xn, yn) and then stepping from P

to (xn+1, yn+1) along the line through P whose slope is f (xn, y∗n).
In summary, the modified Euler method for approximating the solution to the initial-
value problem

y′ = f (x, y), y(x0) = y0

at the points xn+1 = x0 + nh (n = 0, 1, . . . ) is

yn+1 = yn + 1
2h
[
f (xn, yn)+ f (xn+1, y

∗
n+1)

]
,

where

y∗n+1 = yn + hf (xn, yn), n = 0, 1, . . . .

Example 1.10.2 Apply the modified Euler method with h = 0.1 to determine an approximation to the
solution to the initial-value problem

y′ = y − x, y(0) = 1
2

at x = 1.
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Solution: Taking h = 0.1 and f (x, y) = y − x in the modified Euler method yields

y∗n+1 = yn + 0.1(yn − xn),
yn+1 = yn + 0.05(yn − xn + y∗n+1 − xn+1).

Hence,

yn+1 = yn + 0.05 {yn − xn + [yn + 0.1(yn − xn)] − xn+1} .
That is,

yn+1 = yn + 0.05(2.1yn − 1.1xn − xn+1), n = 0, 1, . . . , 9.

When n = 0,

y1 = y0 + 0.05(2.1y0 − 1.1x0 − x1) = 0.5475,

and when n = 1,

y2 = y1 + 0.05(2.1y1 − 1.1x1 − x2) = 0.5894875.

n xn yn Exact Solution Absolute Error

1 0.1 0.5475 0.547414 0.000085
2 0.2 0.589487 0.589299 0.000189
3 0.3 0.625384 0.625070 0.000313
4 0.4 0.654549 0.654088 0.000461
5 0.5 0.676277 0.675639 0.000637
6 0.6 0.689786 0.688941 0.000845
7 0.7 0.694213 0.693124 0.001089
8 0.8 0.688605 0.687229 0.001376
9 0.9 0.671909 0.670198 0.001711

10 1.0 0.642959 0.640859 0.002100

Table 1.10.3: The results of applying the modified Euler method with h = 0.1 to the
initial-value problem in Example 1.10.2.

Continuing in this manner, we generate the results displayed in Table 1.10.3. From this
table, we see that the approximation to y(1) according to the modified Euler method is

y10 = 0.642960.

As seen in the previous example, the value of the exact solution at x = 1 is

y(1) = 0.640859.

Consequently, the absolute error in the approximation at x = 1 using the modified Euler
approximation with h = 0.1 is

|y(1)− y10| = 0.002100.

Comparing this with the results of the previous example, we see that the modified Euler
method has picked up approximately one decimal place of accuracy when using a step
size h = 0.1. This is indicative of the general result that the error in the modified Euler
method behaves as order h2 as compared to the order h behavior of the Euler method.
In Figure 1.10.4 we have sketched the exact solution to the differential equation and the
modified Euler approximation with h = 0.1.
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Figure 1.10.4: The exact solution to the initial-value problem in Example 1.10.2 and the
approximations obtained using the modified Euler method with h = 0.1.

�

Runge-Kutta Method of Order Four
The final method that we consider is somewhat more tedious to use in hand calculations,
but is very easily programmed into a calculator or computer. It is a fourth-order method,
which, in the case of a differential equation of the form y′ = f (x), reduces to Simp-
son’s rule (which the reader has probably studied in a calculus course) for numerically
evaluating definite integrals. Without justification, we state the algorithm.
The fourth-order Runge-Kutta method for approximating the solution to the initial-
value problem

y′ = f (x, y), y(x0) = y0

at the points xn+1 = x0 + nh (n = 0, 1, . . . ) is

yn+1 = yn + 1
6 (k1 + 2k2 + 2k3 + k4),

where

k1 = hf (xn, yn), k2 = hf (xn + 1
2h, yn + 1

2k1), k3 = hf (xn + 1
2h, yn + 1

2k2),

k4 = hf (xn+1, yn + k3),

n = 0, 1, 2, . . . .

Remark In the previous sections, we used Maple to generate slope fields and approx-
imate solution curves for first-order differential equations. The solution curves were in
fact generated using a Runge-Kutta approximation.

Example 1.10.3 Apply the fourth-order Runge-Kutta method withh = 0.1 to determine an approximation
to the solution to the initial-value problem below at x = 1:

y′ = y − x, y(0) = 1
2
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Solution: We take h = 0.1, and f (x, y) = y − x in the fourth-order Runge-Kutta
method, and we need to determine y10. First we determine k1, k2, k3, k4.

k1 = 0.1f (xn, yn) = 0.1(yn − xn),
k2 = 0.1f (xn + 0.05, yn + 0.5k1) = 0.1(yn + 0.5k1 − xn − 0.05),
k3 = 0.1f (xn + 0.05, yn + 0.5k2) = 0.1(yn + 0.5k2 − xn − 0.05),
k4 = 0.1f (xn+1, yn + k3) = 0.1(yn + k3 − xn+1).

When n = 0,

k1 = 0.1(0.5) = 0.05,
k2 = 0.1[0.5+ (0.5)(0.05)− 0.05] = 0.0475,
k3 = 0.1[0.5+ (0.5)(0.0475)− 0.05] = 0.047375,
k4 = 0.1(0.5+ 0.047375− 0.1) = 0.0447375,

so that

y1 = y0 + 1
6 (k1 + 2k2 + 2k3 + k4) = 0.5+ 1

6 (0.2844875) = 0.54741458,

rounded to eight decimal places. Continuing in this manner, we obtain the results dis-
played in Table 1.10.4.

n xn yn Exact Solution Absolute Error

1 0.1 0.54741458 0.54741454 0.00000004
2 0.2 0.58929871 0.58929862 0.00000009
3 0.3 0.62507075 0.62507060 0.00000015
4 0.4 0.65408788 0.65408765 0.00000022
5 0.5 0.67563968 0.67563936 0.00000032
6 0.6 0.68894102 0.68894060 0.00000042
7 0.7 0.69312419 0.69312365 0.00000054
8 0.8 0.68723022 0.68722954 0.00000068
9 0.9 0.67019929 0.67019844 0.00000085

10 1.0 0.64086013 0.64085909 0.00000104

Table 1.10.4: The results of applying the fourth-order Runge-Kutta method with h = 0.1 to
the initial-value problem in Example 1.10.3.

In particular, we see that the fourth-order Runge-Kutta method approximation to y(1) is

y10 = 0.64086013,

so that

|y(1)− y10| = 0.00000104.

Clearly this is an excellent approximation. If we increase the step size to h = 0.2, the
corresponding approximation to y(1) becomes

y5 = 0.640874,

with absolute error

|y(1)− y5| = 0.000015,

which is still very impressive. �
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Exercises for 1.10

Key Terms
Euler’s method, Predictor-corrector method, Modified Eu-
ler method (Heun’s method), Fourth-order Runge-Kutta
method.

Skills

• Be able to apply Euler’s method to approximate the
solution to an initial-value problem at a point near the
initial value x0.

• Be able to use the modified Euler method (Heun’s
method) to approximate the solution to an initial-value
problem at a point near the initial value x0.

• Be able to use the fourth-order Runge-Kutta method
to approximate the solution to an initial-value problem
at a point near the initial value x0.

True-False Review
For Questions 1–4, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. Generally speaking, the smaller the step size in Eu-
ler’s method, the more accurate the approximation to
the solution of an initial-value problem at a point near
the initial value x0.

2. Euler’s method is based on the equation of a tangent
line to a curve at a given point (x0, y0).

3. With each additional step that is taken in Euler’s
method, the error in the approximation obtained from
the method can only grow in size.

4. At each step of length h, Heun’s method requires two
applications of Euler’s method with step size h/2.

Problems
For Problems 1–5, use Euler’s method with the specified
step size to determine the solution to the given initial-value
problem at the specified point.

1. y′ = 4y − 1, y(0) = 1, h = 0.05, y(0.5).

2. y′ = − 2xy

1+ x2
, y(0) = 1, h = 0.1, y(1).

3. y′ = x − y2, y(0) = 2, h = 0.05, y(0.5).

4. y′ = −x2y, y(0) = 1, h = 0.2, y(1).

5. y′ = 2xy2, y(0) = 0.5, h = 0.1, y(1).

For Problems 6–10, use the modified Euler method with the
specified step size to determine the solution to the given
initial-value problem at the specified point. In each case,
compare your answer to that obtained using Euler’s method.

6. The initial-value problem in Problem 1.

7. The initial-value problem in Problem 2.

8. The initial-value problem in Problem 3.

9. The initial-value problem in Problem 4.

10. The initial-value problem in Problem 5.

For Problems 11–15, use the fourth-order Runge-Kutta
method with the specified step size to determine the solu-
tion to the given initial-value problem at the specified point.
In each case, compare your answer to that obtained using
Euler’s method.

11. The initial-value problem in Problem 1.

12. The initial-value problem in Problem 2.

13. The initial-value problem in Problem 3.

14. The initial-value problem in Problem 4.

15. The initial-value problem in Problem 5.

16. � Use the fourth-order Runge-Kutta method with
h = 0.5 to approximate the solution to the initial-
value problem

y′ + 1
10y = e−x/10 cos x, y(0) = 0

at the points x = 0.5, 1.0, . . . , 25. Plot these
points and describe the behavior of the corresponding
solution.


