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32 CHAPTER 1 First-Order Differential Equations

(c) Plot the solution curve corresponding to the ini-
tial condition y(π/2) = 6/π . How does this fit
in with your answer to part (b)?

(d) Describe the behavior of the solution curves for
large positive x.

33. � Consider the family of curves y = kx2, where k is
a constant.

(a) Show that the differential equation of the family
of orthogonal trajectories is

dy

dx
= − x

2y
.

(b) On the same axes sketch the slope field for the
preceding differential equation and several mem-

bers of the given family of curves. Describe the
family of orthogonal trajectories.

34. � Consider the differential equation

di

dt
+ ai = b,

where a and b are constants. By drawing the slope
fields corresponding to various values of a and b, for-
mulate a conjecture regarding the value of

lim
t→∞ i(t).

1.4 Separable Differential Equations

In the previous section we analyzed first-order differential equations using qualitative
techniques. We now begin an analytical study of these differential equations by devel-
oping some solution techniques that enable us to determine the exact solution to certain
types of differential equations. The simplest differential equations for which a solution
technique can be obtained are the so-called separable equations, which are defined as
follows:

DEFINITION 1.4.1

A first-order differential equation is called separable if it can be written in the form

p(y)
dy

dx
= q(x). (1.4.1)

The solution technique for a separable differential equation is given in Theorem 1.4.2.

Theorem 1.4.2 If p(y) and q(x) are continuous, then Equation (1.4.1) has the general solution∫
p(y) dy =

∫
q(x) dx + c, (1.4.2)

where c is an arbitrary constant.

Proof We use the chain rule for derivatives to rewrite Equation (1.4.1) in the equivalent
form

d

dx

(∫
p(y) dy

)
= q(x).

Integrating both sides of this equation with respect to x yields Equation (1.4.2).
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1.4 Separable Differential Equations 33

Remark In differential form, Equation (1.4.1) can be written as

p(y) dy = q(x) dx,
and the general solution (1.4.2) is obtained by integrating the left-hand side with respect
to y and the right-hand side with respect to x. This is the general procedure for solving
separable equations.

Example 1.4.3 Solve (1+ y2)
dy

dx
= x cos x.

Solution: By inspection we see that the differential equation is separable. Integrating
both sides of the differential equation yields∫

(1+ y2) dy =
∫
x cos x dx + c.

Using integration by parts to evaluate the integral on the right-hand side, we obtain

y + 1
3y

3 = x sin x + cos x + c,
or equivalently

y3 + 3y = 3(x sin x + cos x)+ c1,

where c1 = 3c. As often happens with separable differential equations, the solution is
given in implicit form. �

In general, the differential equation dy/dx = f (x)g(y) is separable, since it can be
written as

1

g(y)

dy

dx
= f (x),

which is of the form of Equation (1.4.1) with p(y) = 1/g(y). It is important to note,
however, that in writing the given differential equation in this way, we have assumed
that g(y) �= 0. Thus the general solution to the resulting differential equation may not
include solutions of the original equation corresponding to any values of y for which
g(y) = 0. (These are the equilibrium solutions for the original differential equation.)
We will illustrate with an example.

Example 1.4.4 Find all solutions to

y′ = −2y2x. (1.4.3)

Solution: Separating the variables yields

y−2dy = −2x dx. (1.4.4)

Integrating both sides, we obtain

−y−1 = −x2 + c



“main”
2007/2/16
page 34

�

�

�

�

�

�

�

�

34 CHAPTER 1 First-Order Differential Equations

so that

y(x) = 1

x2 − c . (1.4.5)

This is the general solution to Equation (1.4.4). It is not the general solution to Equa-
tion (1.4.3), since there is no value of the constant c for which y(x) = 0, whereas by
inspection we see y(x) = 0 is a solution to Equation (1.4.3). This solution is not con-
tained in (1.4.5), since in separating the variables, we divided by y and hence assumed
implicitly that y �= 0. Thus the solutions to Equation (1.4.3) are

y(x) = 1

x2 − c and y(x) = 0.

The slope field for the given differential equation is depicted in Figure 1.4.1, together
with some representative solution curves. �

2

1

�1

�1�2

�2

21

y

x

Figure 1.4.1: The slope field and some solution curves for the differential equation
dy/dx = −2xy2.

Many difficulties that students encounter with first-order differential equations arise
not from the solution techniques themselves, but in the algebraic simplifications that are
used to obtain a simple form for the resulting solution. We will explicitly illustrate some
of the standard simplifications using the differential equation

dy

dx
= −2xy.

First notice that y(x) = 0 is an equilibrium solution to the differential equation. Con-
sequently, no other solution curves can cross the x-axis. For y �= 0 we can separate the
variables to obtain

1

y
dy = −2x dx. (1.4.6)
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1.4 Separable Differential Equations 35

Integrating this equation yields

ln |y| = −x2 + c.

Exponentiating both sides of this solution gives

|y| = e−x2+c,

or equivalently,

|y| = ece−x2
.

We now introduce a new constant c1 defined by c1 = ec. Then the preceding expression
for |y| reduces to

|y| = c1e
−x2

. (1.4.7)

Notice that c1 is a positive constant. This is a perfectly acceptable form for the solution.
However, a redefinition of the integration constant can be used to eliminate the absolute-
value bars as follows. According to (1.4.7), the solution to the differential equation is

y(x) =
{
c1e
−x2

, if y > 0,

−c1e
−x2

, if y < 0.
(1.4.8)

We can now define a new constant c2, by

c2 =
{
c1, if y > 0,

−c1, if y < 0,

in terms of which the solutions given in (1.4.8) can be combined into the single formula

y(x) = c2e
−x2

. (1.4.9)

The appropriate sign for c2 will be determined from the initial conditions. For example,
the initial condition y(0) = 1 would require that c2 = 1, with corresponding unique
solution

y(x) = e−x2
.

Similarly the initial condition y(0) = −1 leads to c2 = −1, so that

y(x) = −e−x2
.

We make one further point about the solution (1.4.9). In obtaining the separable form
(1.4.6), we divided the given differential equation by y, and so the derivation of the
solution obtained assumes that y �= 0. However, as we have already noted, y(x) = 0 is
indeed a solution to this differential equation. Formally this solution is the special case
c2 = 0 in (1.4.9) and corresponds to the initial condition y(0) = 0. Thus (1.4.9) does
give the general solution to the differential equation, provided we allow c2 to assume the
value zero. The slope field for the differential equation, together with some particular
solution curves, is shown in Figure 1.4.2.
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Figure 1.4.2: Slope field and some solution curves for the differential equation
dy/dx = −2xy.

Example 1.4.5 An object of mass m falls from rest, starting at a point near the earth’s surface. Assum-
ing that the air resistance is proportional to the velocity of the object, determine the
subsequent motion.

mg

kv

Positive y

Figure 1.4.3: Particle falling
under the influence of gravity and
air resistance.

Solution: Let y(t) be the distance traveled by the object at time t from the point it
was released, and let the positive y-direction be downward. Then, y(0) = 0, and the
velocity of the object is v(t) = dy/dt . Since the object was dropped from rest, we have
v(0) = 0. The forces acting on the object are those due to gravity, Fg = mg, and the
force due to air resistance, Fr = −kv, where k is a positive constant (see Figure 1.4.3).
According to Newton’s second law, the differential equation describing the motion of
the object is

m
dv

dt
= Fg + Fr = mg − kv.

We are also given the initial condition v(0) = 0. Thus the initial-value problem governing
the behavior of v is 

m
dv

dt
= mg − kv,

v(0) = 0.
(1.4.10)

Separating the variables in Equation (1.4.10) yields

m

mg − kv dv = dt,

which can be integrated directly to obtain

−m
k

ln |mg − kv| = t + c.
Multiplying both sides of this equation by −k/m and exponentiating the result yields

|mg − kv| = c1e
−(k/m)t ,

where c1 = e−ck/m. By redefining the constant c1, we can write this in the equivalent
form

mg − kv = c2e
−(k/m)t .
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1.4 Separable Differential Equations 37

Hence,

v(t) = mg

k
− c3e

−(k/m)t , (1.4.11)

where c3 = c2/k. Imposing the initial condition v(0) = 0 yields

c3 = mg

k
.

So the solution to the initial-value problem (1.4.10) is

v(t) = mg

k

[
1− e−(k/m)t

]
. (1.4.12)

Notice that the velocity does not increase indefinitely, but approaches a so-called limiting
velocity vL defined by

vL = lim
t→∞ v(t) = lim

t→∞
mg

k

[
1− e−(k/m)t

]
= mg

k
.

The behavior of the velocity as a function of time is shown in Figure 1.4.4. Owing to the
negative exponent in (1.4.11), we see that this result is independent of the value of the
initial velocity.

mg/k

v

t

Figure 1.4.4: The behavior of the velocity of the object in Example 1.4.5.

Since dy/dt = v, it follows from (1.4.12) that the position of the object at time t
can be determined by solving the initial-value problem

dy

dt
= mg

k

[
1− e−(k/m)t

]
, y(0) = 0.

The differential equation can be integrated directly to obtain

y(t) = mg

k

[
t + m

k
e−(k/m)t

]
+ c.

Imposing the initial condition y(0) = 0 yields

c = −m
2g

k2
,

so that

y(t) = mg

k

{
t + m

k

[
e−(k/m)t − 1

]}
.

�
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38 CHAPTER 1 First-Order Differential Equations

Example 1.4.6 A hot metal bar whose temperature is 350◦F is placed in a room whose temperature is
constant at 70◦F. After two minutes, the temperature of the bar is 210◦F. Using Newton’s
law of cooling, determine

1. the temperature of the bar after four minutes.

2. the time required for the bar to cool to 100◦F.

Solution: According to Newton’s law of cooling (see Section 1.1), the temperature
of the object at time t is governed by the differential equation

dT

dt
= −k(T − Tm), (1.4.13)

where, from the statement of the problem,

Tm = 70◦F, T (0) = 350◦F, T (2) = 210◦F.

Substituting for Tm in Equation (1.4.13), we have the separable equation

dT

dt
= −k(T − 70).

Separating the variables yields

1

T − 70
dT = −k dt,

which we can integrate immediately to obtain

ln |T − 70| = −kt + c.
Exponentiating both sides and solving for T yields

T (t) = 70+ c1e
−kt , (1.4.14)

where we have redefined the integration constant. The two constants c1 and k can be
determined from the given auxiliary conditions as follows. The condition T (0) = 350◦F
requires that 350 = 70+c1. Hence, c1 = 280. Substituting this value for c1 into (1.4.14)
yields

T (t) = 70(1+ 4e−kt ). (1.4.15)

Consequently, T (2) = 210◦F if and only if

210 = 70(1+ 4e−2k),

so that e−2k = 1
2 . Hence, k = 1

2 ln 2, and so, from (1.4.15),

T (t) = 70
[
1+ 4e−(t/2) ln 2

]
. (1.4.16)

We can now determine the quantities requested.

1. We have T (4) = 70(1+ 4e−2 ln 2) = 70

(
1+ 4 · 1

22

)
= 140◦F.
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2. From (1.4.16), T (t) = 100◦F when

100 = 70
[
1+ 4e−(t/2) ln 2

]
—that is, when

e−(t/2) ln 2 = 3

28
.

Taking the natural logarithm of both sides and solving for t yields

t = 2 ln (28/3)

ln 2
≈ 6.4 minutes. �

Exercises for 1.4

Skills

• Be able to recognize whether or not a given differential
equation is separable.

• Be able to solve separable differential equations.

True-False Review
For Questions 1–9, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. Every differential equation of the form dy/dx =
f (x)g(y) is separable.

2. The general solution to a separable differential equa-
tion contains one constant whose value can be de-
termined from an initial condition for the differential
equation.

3. Newton’s law of cooling is a separable differential
equation.

4. The differential equation dy/dx = x2 + y2 is
separable.

5. The differential equation dy/dx = x sin(xy) is
separable.

6. The differential equation
dy

dx
= ex+y is separable.

7. The differential equation

dy

dx
= 1

x2(1+ y2)

is separable.

8. The differential equation

dy

dx
= x + 4y

4x + y

is separable.

9. The differential equation

dy

dx
= x3y + x2y2

x2 + xy

is separable.

Problems

For Problems 1–11, solve the given differential equation.

1.
dy

dx
= 2xy.

2.
dy

dx
= y2

x2 + 1
.

3. ex+ydy − dx = 0.

4.
dy

dx
= y

x ln x
.

5. ydx − (x − 2)dy = 0.

6.
dy

dx
= 2x(y − 1)

x2 + 3
.



“main”
2007/2/16
page 40

�

�

�

�

�

�

�

�
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7. y − x dy
dx
= 3− 2x2 dy

dx
.

8.
dy

dx
= cos(x − y)

sin x sin y
− 1.

9.
dy

dx
= x(y2 − 1)

2(x − 2)(x − 1)
.

10.
dy

dx
= x2y − 32

16− x2
+ 2.

11. (x − a)(x − b)y′ − (y − c) = 0, where a, b, c are
constants.

In Problems 12–15, solve the given initial-value problem.

12. (x2 + 1)y′ + y2 = −1, y(0) = 1.

13. (1 − x2)y′ + xy = ax, y(0) = 2a, where a is a
constant.

14.
dy

dx
= 1− sin(x + y)

sin y cos x
, y(π/4) = π/4.

15. y′ = y3 sin x, y(0) = 0.

16. One solution to the initial-value problem

dy

dx
= 2

3
(y − 1)1/2, y(1) = 1

is y(x) = 1. Determine another solution. Does this
contradict the existence and uniqueness theorem (The-
orem 1.3.2)? Explain.

17. An object of massm falls from rest, starting at a point
near the earth’s surface. Assuming that the air resis-
tance varies as the square of the velocity of the object,
a simple application of Newton’s second law yields
the initial-value problem for the velocity, v(t), of the
object at time t :

m
dv

dt
= mg − kv2, v(0) = 0,

where k,m, g are positive constants.

(a) Solve the foregoing initial-value problem for v in
terms of t .

(b) Does the velocity of the object increase indefi-
nitely? Justify.

(c) Determine the position of the object at time t .

18. Find the equation of the curve that passes through the
point (0, 1

2 ) and whose slope at each point (x, y) is
−x/4y.

19. Find the equation of the curve that passes through the
point (3, 1) and whose slope at each point (x, y) is
ex−y .

20. Find the equation of the curve that passes through the
point (−1, 1) and whose slope at each point (x, y) is
x2y2.

21. At time t , the velocity v(t) of an object moving in a
straight line satisfies

dv

dt
= −(1+ v2). (1.4.17)

(a) Show that

tan−1(v) = tan−1(v0)− t,
where v0 denotes the velocity of the object at time
t = 0 (and we assume v0 > 0). Hence prove
that the object comes to rest after a finite time
tan−1(v0). Does the object remain at rest?

(b) Use the chain rule to show that (1.4.17) can be
written as

v
dv

dx
= −(1+ v2),

where x(t) denotes the distance traveled by the
object at time t , from its position at t = 0. Deter-
mine the distance traveled by the object when it
first comes to rest.

22. The differential equation governing the velocity of an
object is

dv

dt
= −kvn,

where k > 0 and n are constants. At t = 0, the object
is set in motion with velocity v0.

(a) Show that the object comes to rest in a finite time
if and only if n < 1, and determine the maximum
distance traveled by the object in this case.

(b) If 1 ≤ n < 2, show that the maximum distance
traveled by the object in a finite time is less than

v2−n
0

(2− n)k .

(c) If n ≥ 2, show that there is no limit to the distance
that the object can travel.
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23. The pressure p, and density, ρ, of the atmosphere at a
height y above the earth’s surface are related by

dp = −gρ dy.
Assuming that p and ρ satisfy the adiabatic equation

of state p = p0

(
ρ

ρ0

)γ
, where γ �= 1 is a constant

and p0 and ρ0 denote the pressure and density at the
earth’s surface, respectively, show that

p = p0

[
1− (γ − 1)

γ
· ρ0gy

p0

]γ /(γ−1)

.

24. An object whose temperature is 615◦F is placed in a
room whose temperature is 75◦F. At 4 p.m. the temper-
ature of the object is 135◦F, and an hour later its tem-
perature is 95◦F. At what time was the object placed
in the room?

25. A flammable substance whose initial temperature is
50◦F is inadvertently placed in a hot oven whose tem-
perature is 450◦F. After 20 minutes, the substance’s
temperature is 150◦F. Find the temperature of the sub-
stance after 40 minutes. Assuming that the substance
ignites when its temperature reaches 350◦F, find the
time of combustion.

26. At 2 p.m. on a cool (34◦F) afternoon in March, Sher-
lock Holmes measured the temperature of a dead body
to be 38◦F. One hour later, the temperature was 36◦F.
After a quick calculation using Newton’s law of cool-
ing, and taking the normal temperature of a living body
to be 98◦F, Holmes concluded that the time of death
was 10 a.m. Was Holmes right?

27. At 4 p.m., a hot coal was pulled out of a furnace and
allowed to cool at room temperature (75◦F). If, after
10 minutes, the temperature of the coal was 415◦F, and
after 20 minutes, its temperature was 347◦F, find the
following:

(a) The temperature of the furnace.

(b) The time when the temperature of the coal was
100◦F.

28. A hot object is placed in a room whose temperature is
72◦F. After one minute the temperature of the object
is 150◦F and its rate of change of temperature is 20◦F
per minute. Find the initial temperature of the object
and the rate at which its temperature is changing after
10 minutes.

1.5 Some Simple Population Models

In this section we consider two important models of population growth whose mathe-
matical formulation leads to separable differential equations.

Malthusian Growth
The simplest mathematical model of population growth is obtained by assuming that the
rate of increase of the population at any time is proportional to the size of the population
at that time. If we let P(t) denote the population at time t , then

dP

dt
= kP,

where k is a positive constant. Separating the variables and integrating yields

P(t) = P0e
kt , (1.5.1)

where P0 denotes the population at t = 0. This law predicts an exponential increase in
the population with time, which gives a reasonably accurate description of the growth
of certain algae, bacteria, and cell cultures. It is called the Malthusian growth model.
The time taken for such a culture to double in size is called the doubling time. This is
the time, td , when P(td) = 2P0. Substituting into (1.5.1) yields

2P0 = P0e
ktd .

Dividing both sides by P0 and taking logarithms, we find

ktd = ln 2,


