
“main”
2007/2/16
page 172

�

�

�

�

�

�

�

�

172 CHAPTER 2 Matrices and Systems of Linear Equations

41. A =




7 13 15 21
9 −2 14 23

17 −27 22 31
19 −42 21 33


.

42. A is a randomly generated 5× 5 matrix.

43. � For the system in Problem 21, determine A−1 and
use it to solve the system.

44. � Consider the n× n Hilbert matrix

Hn =
[

1

i + j − 1

]
, 1 ≤ i, j ≤ n.

(a) Determine H4 and show that it is invertible.

(b) Find H−1
4 and use it to solve H4x = b if b =

[2,−1, 3, 5]T .

2.7 Elementary Matrices and the LU Factorization

We now introduce some matrices that can be used to perform elementary row operations
on a matrix. Although they are of limited computational use, they do play a significant
role in linear algebra and its applications.

DEFINITION 2.7.1

Any matrix obtained by performing a single elementary row operation on the identity
matrix is called an elementary matrix.

In particular, an elementary matrix is always a square matrix. In general we will
denote elementary matrices byE. If we are describing a specific elementary matrix, then
in keeping with the notation introduced previously for elementary row operations, we
will use the following notation for the three types of elementary matrices:

Type 1: Pij—permute rows i and j in In.
Type 2: Mi (k)—multiply row i of In by the nonzero scalar k.
Type 3: Aij (k)—add k times row i of In to row j of In.

Example 2.7.2 Write all 2× 2 elementary matrices.

Solution: From Definition 2.7.1 and using the notation introduced above, we have

1. Permutation matrix: P12 =
[

0 1
1 0

]
.

2. Scaling matrices: M1(k) =
[
k 0
0 1

]
, M2(k) =

[
1 0
0 k

]
.

3. Row combinations: A12(k) =
[

1 0
k 1

]
, A21(k) =

[
1 k
0 1

]
.

�

We leave it as an exercise to verify that the n × n elementary matrices have the
following structure:
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Pij : ones along main diagonal except (i, i) and (j, j), ones in the (i, j) and (j, i)
positions, and zeros elsewhere.

Mi (k): the diagonal matrix diag(1, 1, . . . , k, . . . , 1), where k appears in the (i, i)
position.

Aij (k): ones along the main diagonal, k in the (j, i) position, and zeros elsewhere.

A key point to note about elementary matrices is the following:

Premultiplying an n× p matrix A by an n× n elementary matrix E has the effect
of performing the corresponding elementary row operation on A.

Rather than proving this statement, which we leave as an exercise, we illustrate with
an example.

Example 2.7.3 If A =
[

3 −1 4
2 7 5

]
, then, for example,

M1(k)A =
[
k 0
0 1

] [
3 −1 4
2 7 5

]
=
[

3k −k 4k
2 7 5

]
.

Similarly,

A21(k)A =
[

1 k
0 1

] [
3 −1 4
2 7 5

]
=
[

3+ 2k −1+ 7k 4+ 5k
2 7 5

]
. �

Since elementary row operations can be performed on a matrix by premultiplication
by an appropriate elementary matrix, it follows that any matrixA can be reduced to row-
echelon form by multiplication by a sequence of elementary matrices. Schematically we
can therefore write

EkEk−1 · · ·E2E1A = U,
where U denotes a row-echelon form of A and the Ei are elementary matrices.

Example 2.7.4 Determine elementary matrices that reduce A =
[

2 3
1 4

]
to row-echelon form.

Solution: We can reduce A to row-echelon form using the following sequence of
elementary row operations:[

2 3
1 4

]
1
∼

[
1 4
2 3

]
2
∼

[
1 4
0 −5

]
3
∼

[
1 4
0 1

]
.

1. P12 2. A12(−2) 3. M2(− 1
5 )

Consequently,

M2(− 1
5 )A12(−2)P12A =

[
1 4
0 1

]
,
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which we can verify by direct multiplication:

M2(− 1
5 )A12(−2)P12A =

[
1 0
0 − 1

5

] [
1 0
−2 1

] [
0 1
1 0

] [
2 3
1 4

]

=
[

1 0
0 − 1

5

] [
1 0
−2 1

] [
1 4
2 3

]

=
[

1 0
0 − 1

5

] [
1 4
0 −5

]
=
[

1 4
0 1

]
. �

Since any elementary row operation is reversible, it follows that each elementary
matrix is invertible. Indeed, in the 2× 2 case it is easy to see that

P−1
12 =

[
0 1
1 0

]
, M1(k)

−1 =
[

1/k 0
0 1

]
, M2(k)

−1 =
[

1 0
0 1/k

]
,

A12(k)
−1 =

[
1 0
−k 1

]
, A21(k)

−1 =
[

1 −k
0 1

]
.

We leave it as an exercise to verify that in the n× n case, we have:

Mi (k)
−1 = Mi (1/k), P−1

ij = Pij , Aij (k)
−1 = Aij (−k)

Now consider an invertible n× n matrix A. Since the unique reduced row-echelon
form of such a matrix is the identity matrix In, it follows from the preceding discussion
that there exist elementary matrices E1, E2, . . . , Ek such that

EkEk−1 · · ·E2E1A = In.
But this implies that

A−1 = EkEk−1 · · ·E2E1,

and hence,
A = (A−1)−1 = (Ek · · ·E2E1)

−1 = E−1
1 E−1

2 · · ·E−1
k ,

which is a product of elementary matrices. So any invertible matrix is a product of el-
ementary matrices. Conversely, since elementary matrices are invertible, a product of
elementary matrices is a product of invertible matrices, hence is invertible by Corol-
lary 2.6.10. Therefore, we have established the following.

Theorem 2.7.5 LetA be an n×nmatrix. ThenA is invertible if and only ifA is a product of elementary
matrices.

The LU Decomposition of an Invertible Matrix 9

For the remainder of this section, we restrict our attention to invertible n×nmatrices. In
reducing such a matrix to row-echelon form, we have always placed leading ones on the
main diagonal in order that we obtain a row-echelon matrix. We now lift the requirement
that the main diagonal of the row-echelon form contain ones. As a consequence, the
matrix that results from row reduction will be an upper triangular matrix but will not
necessarily be in row-echelon form. Furthermore, reduction to such an upper triangular
form can be accomplished without the use of Type 2 row operations.

9The material in the remainder of this section is not used elsewhere in the text.



“main”
2007/2/16
page 175

�

�

�

�

�

�

�

�

2.7 Elementary Matrices and the LU Factorization 175

Example 2.7.6 Use elementary row operations to reduce the matrix

A =

 2 5 3

3 1 −2
−1 2 1




to upper triangular form.

Solution: The given matrix can be reduced to upper triangular form using the fol-
lowing sequence of elementary row operations:


 2 5 3

3 1 −2
−1 2 1


 1

∼




2 5 2

0 − 13
2 − 13

2

0 9
2

5
2


 2

∼




2 5 3

0 − 13
2 − 13

2

0 0 −2


 .

1. A12(− 3
2 ), A13(

1
2 ) 2. A23(

9
13 ) �

When using elementary row operations of Type 3, the multiple of a specific row that
is subtracted from row i to put a zero in the (i, j) position is called a multiplier and
denoted mij . Thus, in the preceding example, there are three multipliers—namely,

m21 = 3
2 , m31 = − 1

2 , m32 = − 9
13 .

The multipliers will be used in the forthcoming discussion.
In Example 2.7.6 we were able to reduce A to upper triangular form using only row

operations of Type 3. This is not always the case. For example, the matrix[
0 5
3 2

]

requires that the two rows be permuted to obtain an upper triangular form. For the
moment, however, we will restrict our attention to invertible matrices A for which the
reduction to upper triangular form can be accomplished without permuting rows. In this
case, we can therefore reduce A to upper triangular form using row operations of Type
3 only. Furthermore, throughout the reduction process, we can restrict ourselves to Type
3 operations that add multiples of a row to rows beneath that row, by simply performing
the row operations column by column, from left to right. According to our description
of the elementary matrices Aij (k), our reduction process therefore uses only elementary
matrices that are unit lower triangular. More specifically, in terms of elementary matrices
we have

EkEk−1 · · ·E2E1A = U,
where Ek , Ek−1, . . . , E2, E1 are unit lower triangular Type 3 elementary matrices and
U is an upper triangular matrix. Since each elementary matrix is invertible, we can write
the preceding equation as

A = E−1
1 E−1

2 · · ·E−1
k U. (2.7.1)

But, as we have already argued, each of the elementary matrices in (2.7.1) is a unit lower
triangular matrix, and we know from Corollary 2.2.23 that the product of two unit lower
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triangular matrices is also a unit lower triangular matrix. Consequently, (2.7.1) can be
written as

A = LU, (2.7.2)

where

L = E−1
1 E−1

2 · · ·E−1
k (2.7.3)

is a unit lower triangular matrix and U is an upper triangular matrix. Equation (2.7.2)
is referred to as the LU factorization of A. It can be shown (Problem 29) that this LU
factorization is unique.

Example 2.7.7 Determine the LU factorization of the matrix

A =

 2 5 3

3 1 −2
−1 2 1


 .

Solution: Using the results of Example 2.7.6, we can write

E3E2E1A =

 2 5 3

0 − 13
2 − 13

2
0 0 −2


 ,

where

E1 = A12(− 3
2 ), E2 = A13(

1
2 ), and E3 = A23(

9
13 ).

Therefore,

U =

 2 5 3

0 − 13
2 − 13

2
0 0 −2




and from (2.7.3),

L = E−1
1 E−1

2 · · ·E−1
k . (2.7.4)

Computing the inverses of the elementary matrices, we have

E−1
1 = A12(

3
2 ), E−1

2 = A13(− 1
2 ), and E−1

3 = A23(− 9
13 ).

Substituting these results into (2.7.4) yields

L =

 1 0 0

3
2 1 0
0 0 1




 1 0 0

0 1 0
− 1

2 0 1




 1 0 0

0 1 0
0 − 9

13 1


 =


 1 0 0

3
2 1 0
− 1

2 − 9
13 1


 .

Consequently,

A =

 1 0 0

3
2 1 0
− 1

2 − 9
13 1






2 5 3

0 − 13
2 − 13

2

0 0 −2




which is easily verified by a matrix multiplication. �
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Computing the lower triangular matrix L in the LU factorization of A using (2.7.3)
can require a significant amount of work. However, if we look carefully at the matrix
L in Example 2.7.7, we see that the elements beneath the leading diagonal are just the
corresponding multipliers. That is, if lij denotes the (i, j) element of the matrix L, then

lij = mij , i > j. (2.7.5)

Furthermore, it can be shown that this relationship holds in general. Consequently, we
do not need to use (2.7.3) to obtain L. Instead we use row operations of Type 3 to reduce
A to upper triangular form, and then we can use (2.7.5) to obtain L directly.

Example 2.7.8 Determine the LU decomposition for the matrix

A =




2 −3 1 2
5 −1 2 1
3 2 6 −5
−1 1 3 2


 .

Solution: To determine U , we reduce A to upper triangular form using only row
operations of Type 3 in which we add multiples of a given row only to rows below the
given row.

A
1
∼




2 −3 1 2

0 13
2 − 1

2 −4

0 13
2

9
2 −8

0 − 1
2

7
2 3




2
∼




2 −3 1 2
0 13

2 − 1
2 −4

0 0 5 −4
0 0 45

13
35
13


 3

∼




2 −3 1 2
0 13

2 − 1
2 −4

0 0 5 −4
0 0 0 71

13


 = U.

Row Operations Corresponding Multipliers

(1) A12(− 5
2 ), A13(− 3

2 ), A14(
1
2 ) m21 = 5

2 , m31 = 3
2 , m41 = − 1

2
(2) A23(−1), A24(

1
13 ) m32 = 1, m42 = − 1

13
(3) A34(− 9

13 ) m43 = 9
13

Consequently, from (2.7.4),

L =




1 0 0 0
5
2 1 0 0
3
2 1 1 0

− 1
2 − 1

13
9

13 1


 .

We leave it as an exercise to verify that LU = A. �
The question undoubtedly in the reader’s mind is: What is the use of the LU decom-

position? In order to answer this question, consider the n× n system of linear equation
Ax = b, where A = LU . If we write the system as

LUx = b

and let Ux = y, then solving Ax = b is equivalent to solving the pair of equations

Ly = b,

Ux = y.
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Owing to the triangular form of each of the coefficient matrices L and U , these systems
can be solved easily—the first by “forward” substitution and the second by back substitu-
tion. In the case when we have a single right-hand-side vector b, the LU factorization for
solving the system has no advantage over Gaussian elimination. However, if we require
the solution of several systems of equations with the same coefficient matrix A, say

Axi = bi , i = 1, 2, . . . , p

then it is more efficient to compute the LU factorization ofA once, and then successively
solve the triangular systems

Lyi = bi ,
Uxi = yi .

}
i = 1, 2, . . . , p.

Example 2.7.9 Use the LU decomposition of

A =




2 −3 1 2
5 −1 2 1
3 2 6 −5
−1 1 3 2




to solve the system Ax = b if b =




2
−3

5
7


.

Solution: We have shown in the previous example that A = LU where

L =




1 0 0 0
5
2 1 0 0
3
2 1 1 0

− 1
2 − 1

13
9

13 1


 and U =




2 −3 1 2

0 13
2 − 1

2 −4

0 0 5 −4

0 0 0 71
13


 .

We now solve the two triangular systemsLy = b andUx = y. Using forward substitution
on the first of these systems, we have

y1 = 2, y2 = −3− 5
2y1 = −8,

y3 = 5− 3
2y1 − y2 = 5− 3+ 8 = 10,

y4 = 7+ 1
2y1 + 1

13y2 − 9
13y3 = 8− 8

13 − 90
13 = 6

13 .

Solving Ux = y via back substitution yields

x4 = 13
71y4 = 6

71 , x3 = 1
5 (y3 + 4x4) = 1

5

(
10+ 24

71

)
= 734

355 ,

x2 = 2
13

(
y2 + 1

2x3 + 4x4

)
= 2

13

(
−8+ 367

355 + 24
71

)
= − 362

355 ,

x1 = 1
2

(
y1 + 3x2 − x3 − 2x4

)
= 1

2

(
2− 1086

355 − 734
355 − 12

71

)
= − 117

71 .

Consequently,

x =
(
− 117

71 ,− 362
355 ,

734
355 ,

6
71

)
. �
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In the more general case when row interchanges are required to reduce an invertible
matrix A to upper triangular form, it can be shown that A has a factorization of the form

A = PLU, (2.7.6)

where P is an appropriate product of elementary permutation matrices, L is a unit
lower triangular matrix, and U is an upper triangular matrix. From the properties of the
elementary permutation matrices, it follows (see Problem 27), that P−1 = PT . Using
(2.7.6) the linear system Ax = b can be written as

PLUx = b,

or equivalently,

LUx = PT b.

Consequently, to solve Ax = b in this case we can solve the two triangular systems

{
Ly = PT b,
Ux = y.

For a full discussion of this and other factorizations of n × n matrices, and their
applications, the reader is referred to more advanced texts on linear algebra or numerical
analysis [for example, B. Noble and J. W.Daniel, Applied Linear Algebra (Englewood
Cliffs, N.J., Prentice Hall, 1988); J. Ll. Morris, Computational Methods in Elementary
Numerical Analysis (New York: Wiley, 1983)].

Exercises for 2.7

Key Terms
Elementary matrix, Multiplier, LU Factorization of a matrix.

Skills

• Be able to determine whether or not a given matrix is
an elementary matrix.

• Know the form for the permutation matrices, scaling
matrices, and row combination matrices.

• Be able to write down the inverse of an elementary
matrix without any computation.

• Be able to determine elementary matrices that reduce
a given matrix to row-echelon form.

• Be able to express an invertible matrix as a product of
elementary matrices.

• Be able to determine the multipliers of a matrix.

• Be able to determine the LU factorization of a matrix.

• Be able to use the LU factorization of a matrix A to
solve a linear system Ax = b.

True-False Review
For Questions 1–10, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.
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1. Every elementary matrix is invertible.

2. A product of elementary matrices is an elementary
matrix.

3. Every matrix can be expressed as a product of elemen-
tary matrices.

4. IfA is anm×nmatrix andE is anm×m elementary
matrix, then the matrices A and EA have the same
rank.

5. If Pij is a permutation matrix, then P 2
ij = Pij .

6. If E1 and E2 are n × n elementary matrices, then
E1E2 = E2E1.

7. IfE1 andE2 are n×n elementary matrices of the same
type, then E1E2 = E2E1.

8. Every matrix has an LU factorization.

9. In the LU factorization of a matrixA, the matrixL is a
unit lower triangular matrix and the matrix U is a unit
upper triangular matrix.

10. A 4× 4 matrix A that has an LU factorization has 10
multipliers.

Problems
1. Write all 3×3 elementary matrices and their inverses.

For Problems 2–5, determine elementary matrices that re-
duce the given matrix to row-echelon form.

2.
[

3 5
1 −2

]
.

3.
[

5 8 2
1 3 −1

]
.

4.


 3 −1 4

2 1 3
1 3 2


.

5.


 1 2 3 4

2 3 4 5
3 4 5 6


.

For Problems 6–12, express the matrix A as a product of
elementary matrices.

6. A =
[

1 2
1 3

]
.

7. A =
[−2 −3

5 7

]
.

8. A =
[

3 −4
−1 2

]
.

9. A =
[

4 −5
1 4

]
.

10. A =

 1 −1 0

2 2 2
3 1 3


 .

11. A =

 0 −4 −2

1 −1 3
−2 2 2


 .

12. A =

 1 2 3

0 8 0
3 4 5


 .

13. Determine elementary matrices E1, E2, . . . , Ek that
reduce

A =
[

2 −1
1 3

]
to reduced row-echelon form. Verify by direct multi-
plication that E1E2 · · ·EkA = I2.

14. Determine a Type 3 lower triangular elementary ma-
trix E1 that reduces

A =
[

3 −2
−1 5

]

to upper triangular form. Use Equation (2.7.3) to de-
termine L and verify Equation (2.7.2).

For Problems 15–20, determine the LU factorization of the
given matrix. Verify your answer by computing the product
LU .

15. A =
[

2 3
5 1

]
.

16. A =
[

3 1
5 2

]
.

17. A =

 3 −1 2

6 −1 1
−3 5 2


.

18. A =

 5 2 1
−10 −2 3

15 2 −3


.

19. A =




1 −1 2 3
2 0 3 −4
3 −1 7 8
1 3 4 5


.

20. A =




2 −3 1 2
4 −1 1 1
−8 2 2 −5

6 1 5 2


.



“main”
2007/2/16
page 181

�

�

�

�

�

�

�

�

2.8 The Invertible Matrix Theorem I 181

For Problems 21–24, use the LU factorization of A to solve
the system Ax = b.

21. A =
[

1 2
2 3

]
,b =

[
3
−1

]
.

22. A =

 1 −3 5

3 2 2
2 5 2


 ,b =


 1

5
−1


.

23. A =

 2 2 1

6 3 −1
−4 2 2


 ,b =


 1

0
2


.

24. A =




4 3 0 0
8 1 2 0
0 5 3 6
0 0 −5 7


 ,b =




2
3
0
5


.

25. Use the LU factorization of

A =
[

2 −1
−8 3

]

to solve each of the systems Axi = bi if

b1 =
[

3
−1

]
, b2 =

[
2
7

]
, b3 =

[
5
−9

]
.

26. Use the LU factorization of

A =

−1 4 2

3 1 4
5 −7 1




to solve each of the systems Axi = ei and thereby
determine A−1.

27. If P = P1P2 · · ·Pk , where each Pi is an elementary
permutation matrix, show that P−1 = PT .

28. Prove that

(a) The inverse of an invertible upper triangular ma-
trix is upper triangular. Repeat for an invertible
lower triangular matrix.

(b) The inverse of a unit upper triangular matrix is
unit upper triangular. Repeat for a unit lower tri-
angular matrix.

29. In this problem, we prove that the LU decomposition
of an invertible n × n matrix is unique in the sense
that, if A = L1U1 and A = L2U2, where L1, L2 are
unit lower triangular matrices and U1, U2 are upper
triangular matrices, then L1 = L2 and U1 = U2.

(a) Apply Corollary 2.6.12 to conclude that L2 and
U1 are invertible, and then use the fact that
L1U1 = L2U2 to establish that L−1

2 L1 =
U2U

−1
1 .

(b) Use the result from (a) together with Theo-
rem 2.2.22 and Corollary 2.2.23 to prove that
L−1

2 L1 = In and U2U
−1
1 = In, from which the

required result follows.

30. QR Factorization: It can be shown that any invertible
n× n matrix has a factorization of the form

A = QR,
where Q and R are invertible, R is upper triangular,
and Q satisfies QTQ = In (i.e., Q is orthogonal).
Determine an algorithm for solving the linear system
Ax = b using this QR factorization.

� For Problems 31–33, use some form of technology to de-
termine the LU factorization of the given matrix. Verify the
factorization by computing the product LU .

31. A =

 3 5 −2

2 7 9
−5 5 11


.

32. A =

 27 −19 32

15 −16 9
23 −13 51


.

33. A =




34 13 19 22
53 17 −71 20
21 37 63 59
81 93 −47 39


.

2.8 The Invertible Matrix Theorem I

In Section 2.6, we defined an n × n invertible matrix A to be a matrix such that there
exists an n × n matrix B satisfying AB = BA = In. There are, however, many other
important and useful viewpoints on invertibility of matrices. Some of these we have
already encountered in the preceding two sections, while others await us in later chapters.
It is worthwhile to begin collecting a list of conditions on an n × n matrix A that are


