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200 CHAPTER 3 Determinants

40. � Use some form of technology to evaluate the deter-
minants in Problems 16–21.

41. �LetA be an arbitrary 4×4 matrix. By experimenting
with various elementary row operations, conjecture
how elementary row operations applied to A affect
the value of det(A).

42. � Verify that y1(x) = e−2x cos 3x, y2(x) =
e−2x sin 3x, and y3(x) = e−4x are solutions to the
differential equation

y′′′ + 8y′′ + 29y′ + 52y = 0,

and show that
y1 y2 y3
y′1 y′2 y′3
y′′1 y′′2 y′′3

is nonzero on any interval.

3.2 Properties of Determinants

For large values of n, evaluating a determinant of order n using the definition given in
the previous section is not very practical, since the number of terms is n! (for example, a
determinant of order 10 contains 3,628,800 terms). In the next two sections, we develop
better techniques for evaluating determinants. The following theorem suggests one way
to proceed.

Theorem 3.2.1 If A is an n× n upper or lower triangular matrix, then

det(A) = a11a22a33 · · · ann =
n∏
i=1

aii .

Proof We use the definition of the determinant to prove the result in the upper triangular
case. From Equation (3.1.3),

det(A) =
∑

σ(p1, p2, . . . , pn)a1p1a2p2a3p3 . . . anpn . (3.2.1)

If A is upper triangular, then aij = 0 whenever i > j , and therefore the only nonzero
terms in the preceding summation are those with pi ≥ i for all i. Since all the pi must
be distinct, the only possibility is (by applying pi ≥ i to i = n, n− 1, . . . , 2, 1 in turn)

pi = i, i = 1, 2, . . . , n,

and so Equation (3.2.1) reduces to the single term

det(A) = σ(1, 2, . . . , n)a11a22 · · · ann.
Since σ(1, 2, . . . , n) = 1, it follows that

det(A) = a11a22 · · · ann.
The proof in the lower triangular case is left as an exercise (Problem 47).

Example 3.2.2 According to the previous theorem,

2 5 −1 3
0 −1 0 4
0 0 7 8
0 0 0 5

= (2)(−1)(7)(5) = −70. �
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Theorem 3.2.1 shows that it is easy to compute the determinant of an upper or lower
triangular matrix. Recall from Chapter 2 that any matrix can be reduced to row-echelon
form by a sequence of elementary row operations. In the case of an n × n matrix, any
row-echelon form will be upper triangular. Theorem 3.2.1 suggests, therefore, that we
should consider how elementary row operations performed on a matrixA alter the value
of det(A).

Elementary Row Operations and Determinants
Let A be an n× n matrix.

P1. If B is the matrix obtained by permuting two rows of A, then

det(B) = − det(A).

P2. If B is the matrix obtained by multiplying one row of A by any2 scalar k, then

det(B) = k det(A).

P3. If B is the matrix obtained by adding a multiple of any row ofA to a different row
of A, then

det(B) = det(A).

The proofs of these properties are given at the end of this section.

Remark The main use of P2 is that it enables us to factor a common multiple of the
entries of a particular row out of the determinant. For example, if

A =
[−1 4

3 −2

]
and B =

[−5 20
3 −2

]
,

where B is obtained from A by multiplying the first row of A by 5, then we have

det(B) = 5 det(A) = 5[(−1)(−2)− (3)(4)] = 5(−10) = −50.

We now illustrate how the foregoing properties P1–P3, together with Theorem 3.2.1,
can be used to evaluate a determinant. The basic idea is the same as that for Gaussian
elimination. We use elementary row operations to reduce the determinant to upper tri-
angular form and then use Theorem 3.2.1 to evaluate the resulting determinant.

Warning: When using the properties P1–P3 to simplify a determinant, one must remem-
ber to take account of any change that arises in the value of the determinant from the
operations that have been performed on it.

Example 3.2.3 Evaluate

2 −1 3 7
1 −2 4 3
3 4 2 −1
2 −2 8 −4

.

2This statement is even true if k = 0.
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Solution: We have

2 −1 3 7
1 −2 4 3
3 4 2 −1
2 −2 8 −4

1= 2

2 −1 3 7
1 −2 4 3
3 4 2 −1
1 −1 4 −2

2= −2

1 −2 4 3
2 −1 3 7
3 4 2 −1
1 −1 4 −2

3= −2

1 −2 4 3
0 3 −5 1
0 10 −10 −10
0 1 0 −5

4= 2

1 −2 4 3
0 1 0 −5
0 10 −10 −10
0 3 −5 1

5= 20

1 −2 4 3
0 1 0 −5
0 1 −1 −1
0 3 −5 1

6= 20

1 −2 4 3
0 1 0 −5
0 0 −1 4
0 0 −5 16

7= 20

1 −2 4 3
0 1 0 −5
0 0 −1 4
0 0 0 −4

= 80.

1. M4(
1
2 ) 2. P12 3. A12(−2), A13(−3), A14(−1) 4. P24

5. M3(
1

10 ) 6. A23(−1), A24(−3) 7. A34(−5)
�

Theoretical Results for n× n Matrices and n× n Linear Systems
In Section 2.8, we established several conditions on an n × n matrix A that are equiv-
alent to saying that A is invertible. At this point, we are ready to give one additional
characterization of invertible matrices in terms of determinants.

Theorem 3.2.4 LetA be ann×nmatrix with real elements. The following conditions onA are equivalent.

(a) A is invertible.

(g) det(A) �= 0.

Proof LetA∗ denote the reduced row-echelon form ofA. Recall from Chapter 2 thatA
is invertible if and only ifA∗ = In. SinceA∗ is obtained fromA by performing a sequence
of elementary row operations, properties P1–P3 of determinants imply that det(A) is just
a nonzero multiple of det(A∗). If A is invertible, then det(A∗) = det(In) = 1, so that
det(A) is nonzero.

Conversely, if det(A) �= 0, then det(A∗) �= 0. This implies that A∗ = In, hence A
is invertible.

According to Theorem 2.5.9 in the previous chapter, any linear system Ax = b has
either no solution, exactly one solution, or infinitely many solutions. Recall from the
Invertible Matrix Theorem that the linear systemAx = b has a unique solution for every
b in R

n if and only if A is invertible. Thus, for an n × n linear system, Theorem 3.2.4
tells us that, for each b in R

n, the system Ax = b has a unique solution x if and only if
det(A) �= 0.

Next, we consider the homogeneous n× n linear system Ax = 0.

Corollary 3.2.5 The homogeneous n×n linear systemAx = 0 has an infinite number of solutions if and
only if det(A) = 0, and has only the trivial solution if and only if det(A) �= 0.
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Proof The system Ax = 0 clearly has the trivial solution x = 0 under any circum-
stances. By our remarks above, this must be the unique solution if and only if det(A) �= 0.
The only other possibility, which occurs if and only if det(A) = 0, is that the system has
infinitely many solutions.

Remark The preceding corollary is very important, since we are often interested only
in determining the solution properties of a homogeneous linear system and not actually in
finding the solutions themselves. We will refer back to this corollary on many occasions
throughout the remainder of the text.

Example 3.2.6 Verify that the matrix

A =

 1 −1 3

2 4 −2
3 5 7




is invertible. What can be concluded about the solution to Ax = 0?

Solution: It is easily shown that det(A) = 52 �= 0. Consequently, A is invertible. It
follows from Corollary 3.2.5 that the homogeneous system Ax = 0 has only the trivial
solution (0, 0, 0). �

Example 3.2.7 Verify that the matrix

A =

 1 0 1

0 1 0
−3 0 −3




is not invertible and determine a set of real solutions to the system Ax = 0.

Solution: By the row operation A13(3), we see that A is row equivalent to the upper
triangular matrix

B =

 1 0 1

0 1 0
0 0 0


 .

By Theorem 3.2.1, det(B) = 0, and hence B and A are not invertible. We illustrate
Corollary 3.2.5 by finding an infinite number of solutions (x1, x2, x3) toAx = 0. Working
with the upper triangular matrix B, we may set x3 = t , a free parameter. The second row
of the matrix system requires that x2 = 0 and the first row requires that x1 + x3 = 0, so
x1 = −x3 = −t . Hence, the set of solutions is {(−t, 0, t) : t ∈ R}. �

Further Properties of Determinants
In addition to elementary row operations, the following properties can also be useful in
evaluating determinants.
Let A and B be n× n matrices.

P4. det(AT ) = det(A).
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P5. Let a1, a2, . . . , an denote the row vectors of A. If the ith row vector of A is the
sum of two row vectors, say ai = bi + ci , then det(A) = det(B)+ det(C), where

B =




a1
...

ai−1
bi
ai+1
...

an




and C =




a1
...

ai−1
ci
ai+1
...

an



.

The corresponding property is also true for columns.

P6. If A has a row (or column) of zeros, then det(A) = 0.

P7. If two rows (or columns) of A are the same, then det(A) = 0.

P8. det(AB) = det(A)det(B).

The proofs of these properties are given at the end of the section. The main im-
portance of P4 is the implication that any results regarding determinants that hold for
the rows of a matrix also hold for the columns of a matrix. In particular, the properties
P1–P3 regarding the effects that elementary row operations have on the determinant
can be translated to corresponding statements on the effects that “elementary column
operations” have on the determinant. We will use the notations

CPij , CMi (k), and CAij (k)

to denote the three types of elementary column operations.

Example 3.2.8 Use only column operations to evaluate

3 6 −1 2
6 10 3 4
9 20 5 4

15 34 3 8

.

Solution: We have

3 6 −1 2
6 10 3 4
9 20 5 4

15 34 3 8

1= 3 · 22

1 3 −1 1
2 5 3 2
3 10 5 2
5 17 3 4

2= 12

1 0 0 0
2 −1 5 0
3 1 8 −1
5 2 8 −1

3= 12

1 0 0 0
2 −1 0 0
3 1 13 −1
5 2 18 −1

4= 12

1 0 0 0
2 −1 0 0
3 1 13 0
5 2 18 5

13

= 12(−5) = −60,

where we have once more used Theorem 3.2.1.

1. CM1(
1
3 ), CM2(

1
2 ), CM4(

1
2 ) 2. CA12(−3), CA13(1), CA14(−1)

3. CA23(5) 4. CA34(
1
13 )

�
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The property that often gives the most difficulty is P5. We explicitly illustrate its
use with an example.

Example 3.2.9 Use property P5 to express

a1 + b1 c1 + d1
a2 + b2 c2 + d2

as a sum of four determinants.

Solution: Applying P5 to row 1 yields:

a1 + b1 c1 + d1
a2 + b2 c2 + d2

= a1 c1
a2 + b2 c2 + d2

+ b1 d1
a2 + b2 c2 + d2

.

Now we apply P5 to row 2 of both of the determinants on the right-hand side to obtain

a1 + b1 c1 + d1
a2 + b2 c2 + d2

= a1 c1
a2 c2

+ a1 c1
b2 d2

+ b1 d1
a2 c2

+ b1 d1
b2 d2

.

Notice that we could also have applied P5 to the columns of the given determinant. �

Warning In view of P5, it may be tempting to believe that if A,B, and C are n × n
matrices such that A = B + C, then det(A) = det(B) + det(C). This is not true!
Examples abound to show the failure of this equation. For instance, if we take B = I2
and C = −I2, then det(A) = det(02) = 0, while det(B) = det(C) = 1. Thus,
det(B)+ det(C) = 1+ 1 = 2 �= 0.

Next, we supply some examples of the last two properties, P7 and P8.

Example 3.2.10 Evaluate

(a)

1 2 −3 1
−2 4 6 2
−3 −6 9 3

2 11 −6 4

.

(b)
2− 4x −4 2
5+ 3x 3 −3
1− 2x −2 1

.

Solution:

(a) We have
1 2 −3 1
−2 4 6 2
−3 −6 9 3

2 11 −6 4

1= −3

1 2 1 1
−2 4 −2 2
−3 −6 −3 3

2 11 2 4

= 0,

since the first and third columns of the latter matrix are identical (see P7).

1. CM3(−1

3
)
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(b) Applying P5 to the first column, we have

2− 4x −4 2
5+ 3x 3 −3
1− 2x −2 1

=
2 −4 2
5 3 −3
1 −2 1

+
−4x −4 2

3x 3 −3
−2x −2 1

= 2
1 −2 1
5 3 −3
1 −2 1

+ x
−4 −4 2

3 3 −3
−2 −2 1

= 0+ 0 = 0,

since the first and third rows of the first matrix agree, and the first and second
columns of the second matrix agree. �

Example 3.2.11 If

A =
[

sin φ cosφ
− cosφ sin φ

]
and B =

[
cos θ − sin θ
sin θ cos θ

]
,

show that det(AB) = 1.

Solution: Using P8, we have

det(AB) = det(A) det(B) = (sin2 φ + cos2 φ)(cos2 θ + sin2 θ) = 1 · 1 = 1. �

Example 3.2.12 Find all x satisfying

x2 x 1
1 1 1
4 2 1

= 0.

Solution: If we expanded this determinant according to Definition 3.1.8 (or using the
schematic in Figure 3.1.1), then we would have a quadratic equation in x. Thus, there are
at most two distinct values of x that satisfy the equation. By inspection, the determinant
vanishes when x = 1 (since the first two rows of the matrix coincide in this case), and it
vanishes when x = 2 (since the first and third rows of the matrix coincide in this case).
Consequently, the two values of x satisfying the given equation are x = 1 and x = 2.

�

Proofs of the Properties of Determinants
We now prove the properties P1–P8.

Proof of P1: Let B be the matrix obtained by interchanging row r with row s in A.
Then the elements of B are related to those of A as follows:

bij =



aij if i �= r, s,
asj if i = r ,
arj if i = s.

Thus, from Definition 3.1.8,

det(B) =
∑

σ(p1, p2, · · · , pr , · · · , ps, · · · , pn)b1p1b2p2 · · · brpr · · · bsps · · · bnpn
=
∑

σ(p1, p2, · · · , pr , · · · , ps, · · · , pn)a1p1a2p2 · · · aspr · · · arps · · · anpn.
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Interchangingpr andps in σ(p1, p2, . . . , pr , . . . , ps, . . . , pn) and recalling from Theo-
rem 3.1.7 that such an interchange has the effect of changing the parity of the permutation,
we obtain

det(B) = −
∑

σ(p1, p2, · · · , ps, · · · , pr , · · · , pn)a1p1a2p2 · · · arps · · · aspr · · · anpn,

where we have also rearranged the terms so that the row indices are in their natural
increasing order. The sum on the right-hand side of this equation is just det(A), so that

det(B) = − det(A).

Proof of P2: Let B be the matrix obtained by multiplying the ith row of A through
by any scalar k. Then bij = kaij for each j . Then

det(B) =
∑

σ(p1, p2, · · · , pn)b1p1b2p2 · · · bnpn
=
∑

σ(p1, p2, · · · , pn)a1p1a2p2 · · · (kaipi ) · · · anpn = k det(A).

We prove properties P5 and P7 next, since they simplify the proof of P3.

Proof of P5: The elements of A are

akj =
{
akj , if k �= i,
bij + cij , if k = i.

Thus, from Definition 3.1.8,

det(A) =
∑

σ(p1, p2, · · · , pn)a1p1a2p2 · · · anpn
=
∑

σ(p1, p2, · · · , pn)a1p1a2p2 · · · ai−1pi−1(bipi + cipi )ai+1pi+1 · · · anpn
=
∑

σ(p1, p2, · · · , pn)a1p1a2p2 · · · ai−1pi−1bipi ai+1pi+1 · · · anpn
+
∑

σ(p1, p2, · · · , pn)a1p1a2p2 · · · ai−1pi−1cipi ai+1pi+1 · · · anpn
= det(B)+ det(C).

Proof of P7: Suppose rows i and j in A are the same. Then if we interchange these
rows, the matrix, and hence its determinant, are unaltered. However, according to P1,
the determinant of the resulting matrix is − det(A). Therefore,

det(A) = − det(A),

which implies that

det(A) = 0.

Proof of P3: Let A = [a1, a2, . . . , an]T , and let B be the matrix obtained from A

when k times row j of A is added to row i of A. Then

B = [a1, a2, . . . , ai + kaj , . . . , an]T
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so that, using P5,

det(B) = det([a1, a2, . . . , ai + kaj , . . . , an]T )
= det([a1, a2, . . . , an]T )+ det([a1, a2, . . . , kaj , . . . , an]T ).

By P2, we can factor out k from row i of the second determinant on the right-hand side.
If we do this, it follows that row i and row j of the resulting determinant are the same,
and so, from P7, the value of the second determinant is zero. Thus,

det(B) = det([a1, a2, . . . , an]T ) = det(A),

as required.

Proof of P4: Using Definition 3.1.8, we have

det(AT ) =
∑

σ(p1, p2, . . . , pn)ap11ap22ap33 · · · apnn. (3.2.2)

Since (p1, p2, . . . , pn) is a permutation of 1, 2, . . . , n, it follows that, by rearranging
terms,

ap11ap22ap33 · · · apnn = a1q1a2q2a3q3 · · · anqn, (3.2.3)

for appropriate values of q1, q2, . . . , qn. Furthermore,

N(p1, . . . , pn) = # of interchanges in changing (1, 2, . . . , n) to (p1, p2, . . . , pn)

= # of interchanges in changing (p1, p2, . . . , pn) to (1, 2, . . . , n)

and by (3.2.3), this number is

= # of interchanges in changing (1, 2, . . . , n) to (q1, q2, . . . , qn)

= N(q1, . . . , qn).

Thus,

σ(p1, p2, . . . , pn) = σ(q1, q2, . . . , qn). (3.2.4)

Substituting Equations (3.2.3) and (3.2.4) into Equation (3.2.2), we have

det(AT ) =
∑

σ(q1, q2, . . . , qn)a1q1a2q2a3q3 · · · anqn
= det(A).

Proof of P6: Since each term σ(p1, p2, . . . , pn)a1p1a2p2 · · · anpn in the formula for
det(A) contains a factor from the row (or column) of zeros, each such term is zero. Thus,
det(A) = 0.

Proof of P8: Let E denote an elementary matrix. We leave it as an exercise (Prob-
lem 51) to verify that

det(E) =



−1, if E permutes rows,

+1, if E adds a multiple of one row to another row,

k, if E scales a row by k.

It then follows from properties P1–P3 that in each case

det(EA) = det(E) det(A). (3.2.5)

Now consider a general product AB. We need to distinguish two cases.
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Case 1: IfA is not invertible, then from Corollary 2.6.12, so isAB. Consequently, applying
Theorem 3.2.4,

det(AB) = 0 = det(A) det(B).

Case 2: If A is invertible, then from Section 2.7, we know that it can be expressed as
the product of elementary matrices, say, A = E1E2 · · ·Er . Hence, repeatedly
applying (3.2.5) gives

det(AB) = det(E1E2 · · ·ErB) = det(E1) det(E2 · · ·ErB)
= det(E1) det(E2) · · · det(Er) det(B)

= det(E1E2 · · ·Er) det(B) = det(A) det(B).

Exercises for 3.2

Skills

• Be able to compute the determinant of an upper or
lower triangular matrix “at a glance” (Theorem 3.2.1).

• Know the effects that elementary row operations have
on the determinant of a matrix.

• Likewise, be comfortable with the effects that column
operations have on the determinant of a matrix.

• Be able to use the determinant to decide if a matrix is
invertible (Theorem 3.2.4).

• Know how the determinant is affected by matrix mul-
tiplication and by matrix transpose.

True-False Review
For Questions 1–6, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. If each element of an n×nmatrix is doubled, then the
determinant of the matrix also doubles.

2. Multiplying a row of an n × n matrix through by a
scalar c has the same effect on the determinant as mul-
tiplying a column of the matrix through by c.

3. If A is an n× n matrix, then det(A5) = (det A)5.

4. If A is a real n × n matrix, then det(A2) cannot be
negative.

5. The matrix

[
x2 x

y2 y

]
is not invertible if and only if

x = 0 or y = 0.

6. If A and B are n × n matrices, then det(AB) =
det(BA).

Problems
For Problems 1–12, reduce the given determinant to upper
triangular form and then evaluate.

1.
1 2 3
2 6 4
3 −5 2

.

2.
2 −1 4
3 2 1
−2 1 4

.

3.
2 1 3
−1 2 6

4 1 12
.

4.
0 1 −2
−1 0 3

2 −3 0
.

5.
3 7 1
5 9 −6
2 1 3

.

6.

1 −1 2 4
3 1 2 4
−1 1 3 2

2 1 4 2

.

7.

2 32 1 4
26 104 26 −13
2 56 2 7
1 40 1 5

.
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8.

0 1 −1 1
−1 0 1 1

1 −1 0 1
−1 −1 −1 0

.

9.

2 1 3 5
3 0 1 2
4 1 4 3
5 2 5 3

.

10.

2 −1 3 4
7 1 2 3
−2 4 8 6

6 −6 18 −24

.

11.

7 −1 3 4
14 2 4 6
21 1 3 4
−7 4 5 8

.

12.

3 7 1 2 3
1 1 −1 0 1
4 8 −1 6 6
3 7 0 9 4
8 16 −1 8 12

.

For Problems 13–19, use Theorem 3.2.4 to determine
whether the given matrix is invertible or not.

13.
[

2 1
3 2

]
.

14.
[−1 1

1 −1

]
.

15.


 2 6 −1

3 5 1
2 0 1


.

16.


−1 2 3

5 −2 1
8 −2 5


.

17.




1 0 2 −1
3 −2 1 4
2 1 6 2
1 −3 4 0


.

18.




1 1 1 1
−1 1 −1 1

1 1 −1 −1
−1 1 1 −1


.

19.




1 2 −3 5
−1 2 −3 6

2 3 −1 4
1 −2 3 −6


.

20. Determine all values of the constant k for which the
given system has a unique solution

x1 + kx2 = b1,

kx1 + 4x2 = b2.

21. Determine all values of the constant k for which the
given system has an infinite number of solutions.

x1 + 2x2 + kx3 = 0,
2x1 − kx2 + x3 = 0,
3x1 + 6x2 + x3 = 0.

22. Determine all values of k for which the given system
has an infinite number of solutions.

x1 + 2x2 + x3 = kx1,

2x1 + x2 + x3 = kx2,

x1 + x2 + 2x3 = kx3.

23. Determine all values of k for which the given system
has a unique solution.

x1 + kx2 = 2,
kx1 + x2 + x3 = 1,
x1 + x2 + x3 = 1.

24. If

A =

 1 −1 2

3 1 4
0 1 3


 ,

find det(A), and use properties of determinants to find
det(AT ) and det(−2A).

25. If

A =
[

1 −1
2 3

]
and B =

[
1 2
−2 4

]
,

evaluate det(AB) and verify P8.

26. If

A =
[

cosh x sinh x
sinh x cosh x

]
and B =

[
cosh y sinh y
sinh y cosh y

]
,

evaluate det(AB).

For Problems 27–29, use properties of determinants to show
that det(A) = 0 for the given matrix A.

27. A =

 3 2 1

6 4 −1
9 6 2


.
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28. A =

 1 −3 1

2 −1 7
3 1 13


.

29. A =

 1+ 3a 1 3

1+ 2a 1 2
2 2 0


.

For Problems 30–32, let A =
[
a b

c d

]
and assume det(A) =

1. Find det(B).

30. B =
[

3c 3d
4a 4b

]
.

31. B =
[ −2a −2c

3a + b 3c + d
]

.

32. B =
[ −b −a
d − 4b c − 4a

]
.

For Problems 33–35, let

A =

 a b c

d e f

g h i




and assume det(A) = −6. Find det(B).

33. B =

 −4d −4e −4f
g + 5a h+ 5b i + 5c
a b c


.

34. B =

 d e f

−3a −3b −3c
g − 4d h− 4e i − 4f


.

35. B =

 2a 2d 2g
b − c e − f h− i
c − a f − d i − g


.

For Problems 36–40, letA and B be 4×4 matrices such that
det(A) = 5 and det(B) = 3. Compute the determinant of
the given matrix.

36. ABT .

37. A2B5.

38. (A−1B2)3.

39. ((2B)−1(AB)T ).

40. (5A)(2B).

41. Let

A =

 1 2 4

3 1 6
k 3 2


 .

(a) In terms of k, find the volume of the parallelepiped
determined by the row vectors of the matrix A.

(b) Does your answer to (a) change if we instead con-
sider the volume of the parallelepiped determined
by the column vectors of the matrix A? Why or
why not?

(c) For what value(s) of k, if any, is A invertible?

42. Without expanding the determinant, determine all val-
ues of x for which det(A) = 0 if

A =

 1 −1 x

2 1 x2

4 −1 x3


 .

43. Use only properties P5, P1, and P2 to show that

αx − βy βx − αy
βx + αy αx + βy = (x

2 + y2)
α β

β α
.

44. Use only properties P5, P1, and P2 to find the value of
αβγ such that

a1 + βb1 b1 + γ c1 c1 + αa1
a2 + βb2 b2 + γ c2 c2 + αa2
a3 + βb3 b3 + γ c3 c3 + αa3

= 0

for all values of ai, bi, ci .

45. Use only properties P3 and P7 to prove property P6.

46. An n×nmatrixA that satisfiesAT = A−1 is called an
orthogonal matrix. Show that if A is an orthogonal
matrix, then det(A) = ±1.

47. (a) Use the definition of a determinant to prove that
if A is an n× n lower triangular matrix, then

det(A) = a11a22a33 · · · ann =
n∏
i=1

aii .

(b) Evaluate the following determinant by first reduc-
ing it to lower triangular form and then using the
result from (a):

2 −1 3 5
1 2 2 1
3 0 1 4
1 2 0 1

.

48. Use determinants to prove that ifA is invertible and B
and C are matrices with AB = AC, then B = C.
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49. If A and S are n× n matrices with S invertible, show
that det(S−1AS) = det(A). [Hint: Since S−1S = In,
how are det(S−1) and det(S) related?]

50. If det(A3) = 0, is it possible for A to be invertible?
Justify your answer.

51. Let E be an elementary matrix. Verify the formula for
det(E) given in the text at the beginning of the proof
of P8.

52. Show that
x y 1
x1 y1 1
x2 y2 1

= 0

represents the equation of the straight line through the
distinct points (x1, y1) and (x2, y2).

53. Without expanding the determinant, show that

1 x x2

1 y y2

1 z z2
= (y − z)(z− x)(x − y).

54. If A is an n× n skew-symmetric matrix and n is odd,
prove that det(A) = 0.

55. Let A = [a1, a2, . . . , an] be an n × n matrix, and let
b = c1a1 + c2a2 + · · · + cnan, where c1, c2, . . . , cn
are constants. If Bk denotes the matrix obtained from
A by replacing the kth column vector by b, prove that

det(Bk) = ck det(A), k = 1, 2, . . . , n.

56. � Let A be the general 4× 4 matrix.

(a) Verify property P1 of determinants in the case
when the first two rows of A are permuted.

(b) Verify property P2 of determinants in the case
when row 1 of A is divided by k.

(c) Verify property P3 of determinants in the case
when k times row 2 is added to row 1.

57. � For a randomly generated 5 × 5 matrix, verify that
det(AT ) = det(A).

58. � Determine all values of a for which


1 2 3 4 a
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2
a 4 3 2 1




is invertible.

59. � If

A =

 1 4 1

3 2 1
3 4 −1


 ,

determine all values of the constant k for which the
linear system (A− kI3)x = 0 has an infinite number
of solutions, and find the corresponding solutions.

60. � Use the determinant to show that

A =




1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1




is invertible, and use A−1 to solve Ax = b if b =
[3, 7, 1,−4]T .

3.3 Cofactor Expansions

We now obtain an alternative method for evaluating determinants. The basic idea is that
we can reduce a determinant of ordern to a sum of determinants of ordern−1. Continuing
in this manner, it is possible to express any determinant as a sum of determinants of
order 2. This method is the one most frequently used to evaluate a determinant by hand,
although the procedure introduced in the previous section whereby we use elementary
row operations to reduce the matrix to upper triangular form involves less work in general.
When A is invertible, the technique we derive leads to formulas for both A−1 and the
unique solution to Ax = b. We first require two preliminary definitions.

DEFINITION 3.3.1

Let A be an n× n matrix. The minor, Mij , of the element aij , is the determinant of
the matrix obtained by deleting the ith row vector and j th column vector of A.


