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212 CHAPTER 3 Determinants

49. If A and S are n× n matrices with S invertible, show
that det(S−1AS) = det(A). [Hint: Since S−1S = In,
how are det(S−1) and det(S) related?]

50. If det(A3) = 0, is it possible for A to be invertible?
Justify your answer.

51. Let E be an elementary matrix. Verify the formula for
det(E) given in the text at the beginning of the proof
of P8.

52. Show that
x y 1
x1 y1 1
x2 y2 1

= 0

represents the equation of the straight line through the
distinct points (x1, y1) and (x2, y2).

53. Without expanding the determinant, show that

1 x x2

1 y y2

1 z z2
= (y − z)(z− x)(x − y).

54. If A is an n× n skew-symmetric matrix and n is odd,
prove that det(A) = 0.

55. Let A = [a1, a2, . . . , an] be an n × n matrix, and let
b = c1a1 + c2a2 + · · · + cnan, where c1, c2, . . . , cn
are constants. If Bk denotes the matrix obtained from
A by replacing the kth column vector by b, prove that

det(Bk) = ck det(A), k = 1, 2, . . . , n.

56. � Let A be the general 4× 4 matrix.

(a) Verify property P1 of determinants in the case
when the first two rows of A are permuted.

(b) Verify property P2 of determinants in the case
when row 1 of A is divided by k.

(c) Verify property P3 of determinants in the case
when k times row 2 is added to row 1.

57. � For a randomly generated 5 × 5 matrix, verify that
det(AT ) = det(A).

58. � Determine all values of a for which


1 2 3 4 a
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2
a 4 3 2 1




is invertible.

59. � If

A =

 1 4 1

3 2 1
3 4 −1


 ,

determine all values of the constant k for which the
linear system (A− kI3)x = 0 has an infinite number
of solutions, and find the corresponding solutions.

60. � Use the determinant to show that

A =




1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1




is invertible, and use A−1 to solve Ax = b if b =
[3, 7, 1,−4]T .

3.3 Cofactor Expansions

We now obtain an alternative method for evaluating determinants. The basic idea is that
we can reduce a determinant of ordern to a sum of determinants of ordern−1. Continuing
in this manner, it is possible to express any determinant as a sum of determinants of
order 2. This method is the one most frequently used to evaluate a determinant by hand,
although the procedure introduced in the previous section whereby we use elementary
row operations to reduce the matrix to upper triangular form involves less work in general.
When A is invertible, the technique we derive leads to formulas for both A−1 and the
unique solution to Ax = b. We first require two preliminary definitions.

DEFINITION 3.3.1

Let A be an n× n matrix. The minor, Mij , of the element aij , is the determinant of
the matrix obtained by deleting the ith row vector and j th column vector of A.
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Remark Notice that ifA is an n×nmatrix, thenMij is a determinant of order n−1.
By convention, if n = 1, we define the “empty” determinant M11 to be 1.

Example 3.3.2 If

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


 ,

then, for example,

M23 = a11 a12
a31 a32

and M31 = a12 a13
a22 a23

. �

Example 3.3.3 Determine the minors M11, M23, and M31 for

A =

 2 1 3
−1 4 −2

3 1 5


 .

Solution: Using Definition 3.3.1, we have

M11 = 4 −2
1 5

= 22, M23 = 2 1
3 1
= −1, M31 = 1 3

4 −2
= −14. �

DEFINITION 3.3.4

Let A be an n× n matrix. The cofactor, Cij , of the element aij , is defined by

Cij = (−1)i+jMij ,

where Mij is the minor of aij .

From Definition 3.3.4, we see that the cofactor of aij and the minor of aij are the
same if i + j is even, and they differ by a minus sign if i + j is odd. The appropriate
sign in the cofactor Cij is easy to remember, since it alternates in the following manner:

+ − + − + · · ·
− + − + − · · ·
+ − + − + · · ·
...
...
...
...
...

.

Example 3.3.5 Determine the cofactors C11, C23, and C31 for the matrix in Example 3.3.3.

Solution: We have already obtained the minorsM11,M23, andM31 in Example 3.3.3,
so it follows that

C11 = +M11 = 22, C23 = −M23 = 1, C31 = +M31 = −14. �
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214 CHAPTER 3 Determinants

Example 3.3.6 If A =
[
a11 a12
a21 a22

]
, verify that det(A) = a11C11 + a12C12.

Solution: In this case,

C11 = + det[a22] = a22, C12 = − det[a12] = −a12,

so that

a11C11 + a12C12 = a11a22 + a12(−a21) = det(A). �

The preceding example is a special case of the following important theorem.

Theorem 3.3.7 (Cofactor Expansion Theorem)

Let A be an n× n matrix. If we multiply the elements in any row (or column) of A by
their cofactors, then the sum of the resulting products is det(A). Thus,

1. If we expand along row i,

det(A) = ai1Ci1 + ai2Ci2 + · · · + ainCin =
n∑
k=1

aikCik.

2. If we expand along column j ,

det(A) = a1jC1j + a2jC2j + · · · + anjCnj =
n∑
k=1

akjCkj .

The expressions for det(A) appearing in this theorem are known as cofactor expan-
sions. Notice that a cofactor expansion can be formed along any row or column of A.
Regardless of the chosen row or column, the cofactor expansion will always yield the
determinant of A. However, sometimes the calculation is simpler if the row or column
of expansion is wisely chosen. We will illustrate this in the examples below. The proof
of the Cofactor Expansion Theorem will be presented after some examples.

Example 3.3.8 Use the Cofactor Expansion Theorem along (a) row 1, (b) column 3 to find

2 3 4
1 −1 1
6 3 0

.
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Solution:

(a) We have

2 3 4
1 −1 1
6 3 0

= 2
−1 1

3 0
− 3

1 1
6 0
+ 4

1 −1
6 3

= −6+ 18+ 36 = 48.

(b) We have

2 3 4
1 −1 1
6 3 0

= 4
1 −1
6 3

− 1
2 3
6 3
+ 0 = 36+ 12+ 0 = 48. �

Notice that (b) was easier than (a) in the previous example, because of the zero in
column 3. Whenever one uses the cofactor expansion method to evaluate a determinant,
it is usually best to select a row or column containing as many zeros as possible in order
to minimize the amount of computation required.

Example 3.3.9 Evaluate

0 3 −1 0
5 0 8 2
7 2 5 4
6 1 7 0

.

Solution: In this case, it is easiest to use either row 1 or column 4. Choosing row 1,
we have

0 3 −1 0
5 0 8 2
7 2 5 4
6 1 7 0

= −3
5 8 2
7 5 4
6 7 0

+ (−1)
5 0 2
7 2 4
6 1 0

= −3 [2 (49− 30)− 4 (35− 48)+ 0]− [5 (0− 4)− 0+ 2 (7− 12)]
= −240.

In evaluating the determinants of order 3 on the right side of the first equality, we have
used cofactor expansion along column 3 and row 1, respectively. For additional practice,
the reader may wish to verify our result here by cofactor expansion along a different row
or column. �

Now we turn to the

Proof of the Cofactor Expansion Theorem: It follows from the definition of the
determinant that det(A) can be written in the form

det(A) = ai1Ĉi1 + a12Ĉi2 + · · · + ainĈin (3.3.1)

where the coefficients Ĉij contain no elements from row i or column j . We must show
that

Ĉij = Cij
where Cij is the cofactor of aij .

Consider first a11. From Definition 3.1.8, the terms of det(A) that contain a11 are
given by

a11

∑
σ(1, p2, p3, . . . , pn)a2p2a3p3 · · · anpn,
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where the summation is over the (n− 1)! distinct permutations of 2, 3, . . . , n. Thus,

Ĉ11 =
∑

σ(1, p2, p3, . . . , pn)a2p2a3p3 · · · anpn.

However, this summation is just the minor M11, and since C11 = M11, we have shown
the coefficient of a11 in det(A) is indeed the cofactor C11.

Now consider the element aij . By successively interchanging adjacent rows and
columns of A, we can move aij into the (1, 1) position without altering the relative
positions of the other rows and columns of A. We let A′ denote the resulting matrix.
Obtaining A′ from A requires i − 1 row interchanges and j − 1 column interchanges.
Therefore, the total number of interchanges required to obtain A′ from A is i + j − 2.
Consequently,

det(A) = (−1)i+j−2 det(A′) = (−1)i+j det(A′).

Now for the key point. The coefficient of aij in det(A) must be (−1)i+j times the
coefficient of aij in det(A′). But, aij occurs in the (1, 1) position of A′, and so, as we
have previously shown, its coefficient in det(A′) is M ′11. Since the relative positions of
the remaining rows in A have not altered, it follows that M ′11 = Mij , and therefore
the coefficient of aij in det(A′) is Mij . Consequently, the coefficient of aij in det(A) is
(−1)i+jMij = Cij . Applying this result to the elements ai1, ai2, . . . , ain and comparing
with (3.3.1) yields

Ĉij = Cij , j = 1, 2, . . . , n,

which establishes the theorem for expansion along a row. The result for expansion along
a column follows directly, since det(AT ) = det(A).

We now have two computational methods for evaluating determinants: the use of
elementary row operations given in the previous section to reduce the matrix in question
to upper triangular form, and the Cofactor Expansion Theorem. In evaluating a given
determinant by hand, it is usually most efficient (and least error prone) to use a com-
bination of the two techniques. More specifically, we use elementary row operations to
set all except one element in a row or column equal to zero and then use the Cofactor
Expansion Theorem on that row or column. We illustrate with an example.

Example 3.3.10 Evaluate

2 1 8 6
1 4 1 3
−1 2 1 4

1 3 −1 2

.

Solution: We have

2 1 8 6
1 4 1 3
−1 2 1 4

1 3 −1 2

1=
0 −7 6 0
1 4 1 3
0 6 2 7
0 −1 −2 −1

2= −
−7 6 0

6 2 7
−1 −2 −1

3= −
−7 6 0
−1 −12 0
−1 −2 −1

4= 90.

1. A21(−2), A23(1), A24(−1) 2. Cofactor expansion along column 1
3. A32(7) 4. Cofactor expansion along column 3

�
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Example 3.3.11 Determine all values of k for which the system

10x1 + kx2 − x3 = 0,
kx1 + x2 − x3 = 0,
2x1 + x2 − 3x3 = 0,

has nontrivial solutions.

Solution: We will apply Corollary 3.2.5. The determinant of the matrix of coefficients
of the system is

det(A) =
10 k −1
k 1 −1
2 1 −3

1=
10 k −1

k − 10 1− k 0
−28 1− 3k 0

2= − k − 10 1− k
−28 1− 3k

= − [(k − 10)(1− 3k)− (−28)(1− k)] = 3k2 − 3k − 18 = 3(k2 − k − 6)

= 3(k − 3)(k + 2).

1. A12(−1), A13(−3) 2. Cofactor expansion along column 3.

From Corollary 3.2.5, the system has nontrivial solutions if and only if det(A) = 0; that
is, if and only if k = 3 or k = −2. �

The Adjoint Method for A−1

We next establish two corollaries to the Cofactor Expansion Theorem that, in the case
of an invertible matrix A, lead to a method for expressing the elements of A−1 in terms
of determinants.

Corollary 3.3.12 If the elements in the ith row (or column) of an n × n matrix A are multiplied by the
cofactors of a different row (or column), then the sum of the resulting products is zero.
That is,

1. If we use the elements of row i and the cofactors of row j ,

n∑
k=1

aikCjk = 0, i �= j. (3.3.2)

2. If we use the elements of column i and the cofactors of column j ,

n∑
k=1

akiCkj = 0, i �= j. (3.3.3)

Proof We prove (3.3.2). Let B be the matrix obtained from A by adding row i to row
j (i �= j ) in the matrix A. By P3, det(B) = det(A). Cofactor expansion of B along row
j gives

det(A) = det(B) =
n∑
k=1

(ajk + aik)Cjk =
n∑
k=1

ajkCjk +
n∑
k=1

aikCjk.
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That is,

det(A) = det(A)+
n∑
k=1

aikCjk,

since by the Cofactor Expansion Theorem the first summation on the right-hand side is
simply det(A). It follows immediately that

n∑
k=1

aikCjk = 0, i �= j.

Equation (3.3.3) can be proved similarly (Problem 47).

The Cofactor Expansion Theorem and the above corollary can be combined into the
following corollary.

Corollary 3.3.13 Let A be an n × n matrix. If δij is the Kronecker delta symbol (see Definition 2.2.19),
then

n∑
k=1

aikCjk = δij det(A),
n∑
k=1

akiCkj = δij det(A). (3.3.4)

The formulas in (3.3.4) should be reminiscent of the index form of the matrix
product. Combining this with the fact that the Kronecker delta gives the elements of the
identity matrix, we might suspect that (3.3.4) is telling us something about the inverse
of A. Before establishing that this suspicion is indeed correct, we need a definition.

DEFINITION 3.3.14

If every element in an n× nmatrix A is replaced by its cofactor, the resulting matrix
is called the matrix of cofactors and is denoted MC . The transpose of the matrix of
cofactors, MT

C , is called the adjoint of A and is denoted adj(A). Thus, the elements
of adj(A) are

adj(A)ij = Cji.

Example 3.3.15 Determine adj(A) if

A =

 2 0 −3
−1 5 4

3 −2 0


 .

Solution: We first determine the cofactors of A:

C11 = 8, C12 = 12, C13 = −13, C21 = 6, C22 = 9, C23 = 4,
C31 = 15, C32 = −5, C33 = 10.

Thus,

MC =

 8 12 −13

6 9 4
15 −5 10


 ,
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so that

adj(A) = MT
C =


 8 6 15

12 9 −5
−13 4 10


 . �

We can now prove the next theorem.

Theorem 3.3.16 (The Adjoint Method for Computing A−1)

If det(A) �= 0, then

A−1 = 1

det(A)
adj(A).

Proof Let B = 1

det(A)
adj(A). Then we must establish that AB = In = BA. But,

using the index form of the matrix product,

(AB)ij =
n∑
k=1

aikbkj =
n∑
k=1

aik · 1

det(A)
· adj(A)kj = 1

det(A)

n∑
k=1

aikCjk = δij ,

where we have used Equation (3.3.4) in the last step. Consequently, AB = In. We leave
it as an exercise (Problem 53) to verify that BA = In also.

Example 3.3.17 For the matrix in Example 3.3.15,

det(A) = 55,

so that

A−1 = 1

55


 8 6 15

12 9 −5
−13 4 10


 . �

For square matrices of relatively small size, the adjoint method for computing A−1

is often easier than using elementary row operations to reduce A to upper triangular
form.

In Chapter 7, we will find that the solution of a system of differential equations can
be expressed naturally in terms of matrix functions. Certain problems will require us to
find the inverse of such matrix functions. For 2× 2 systems, the adjoint method is very
quick.

Example 3.3.18 Find A−1 if A =
[
e2t e−t
3e2t 6e−t

]
.

Solution: In this case,

det(A) = (e2t )(6e−t )− (3e2t )(e−t ) = 3et ,

and

adj(A) =
[

6e−t −e−t
−3e2t e2t

]
,

so that

A−1 =
[

2e−2t − 1
3e
−2t

−et 1
3e
t

]
. �
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Cramer’s Rule
We now derive a technique that enables us, in the case when det(A) �= 0, to express the
unique solution of an n× n linear system

Ax = b

directly in terms of determinants. Let Bk denote the matrix obtained by replacing the kth
column vector of A with b. Thus,

Bk =



a11 a12 . . . b1 . . . a1n
a21 a22 . . . b2 . . . a2n
...

...
...

...

an1 an2 . . . bn . . . ann


 .

The key point to notice is that the cofactors of the elements in the kth column of Bk
coincide with the corresponding cofactors of A. Thus, expanding det(Bk) along the kth
column using the Cofactor Expansion Theorem yields

det(Bk) = b1C1k + b2C2k + · · · + bnCnk =
n∑
i=1

biCik, k = 1, 2, . . . , n, (3.3.5)

where the Cij are the cofactors of A. We can now prove Cramer’s rule.

Theorem 3.3.19 (Cramer’s Rule)

If det(A) �= 0, the unique solution to the n × n system Ax = b is (x1, x2, . . . , xn),
where

xk = det(Bk)

det(A)
, k = 1, 2, . . . , n. (3.3.6)

Proof If det(A) �= 0, then the system Ax = b has the unique solution

x = A−1b, (3.3.7)

where, from Theorem 3.3.16, we can write

A−1 = 1

det(A)
adj(A). (3.3.8)

If we let

x =



x1
x2
...

xn


 and b =



b1
b2
...

bn




and recall that adj(A)ij = Cji , then substitution from (3.3.8) into (3.3.7) and use of the
index form of the matrix product yields

xk =
n∑
i=1

(A−1)kibi =
n∑
i=1

1

det(A)
adj(A)kibi
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= 1

det(A)

n∑
i=1

Cikbi, k = 1, 2, . . . , n.

Using (3.3.5), we can write this as

xk = det(Bk)

det(A)
, k = 1, 2, . . . , n

as required.

Remark In general, Cramer’s rule requires more work than the Gaussian elimination
method, and it is restricted to n × n systems whose coefficient matrix is invertible.
However, it is a powerful theoretical tool, since it gives us a formula for the solution of
an n× n system, provided det(A) �= 0.

Example 3.3.20 Solve

3x1 + 2x2 − x3 = 4,
x1 + x2 − 5x3 = −3,

−2x1 − x2 + 4x3 = 0.

Solution: The following determinants are easily evaluated:

det(A) =
3 2 −1
1 1 −5
−2 −1 4

= 8, det(B1) =
4 2 −1
−3 1 −5

0 −1 4
= 17,

det(B2) =
3 4 −1
1 −3 −5
−2 0 4

= −6, det(B3) =
3 2 4
1 1 −3
−2 −1 0

= 7.

Inserting these results into (3.3.6) yields x1 = 17
8 , x2 = − 6

8 = − 3
4 , and x3 = 7

8 , so
that the solution to the system is ( 17

8 ,− 3
4 ,

7
8 ). �

Exercises for 3.3

Key Terms

Minor, Cofactor, Cofactor expansion, Matrix of cofactors,
Adjoint, Cramer’s rule.

Skills

• Be able to compute the minors and cofactors of a
matrix.

• Understand the difference between Mij and Cij .

• Be able to compute the determinant of a matrix via
cofactor expansion.

• Be able to compute the matrix of cofactors and the
adjoint of a matrix.

• Be able to use the adjoint of an invertible matrix A to
compute A−1.

• Be able to use Cramer’s rule to solve a linear system
of equations.

True-False Review
For Questions 1–7, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. The (2, 3)-minor of a matrix is the same as the (2, 3)-
cofactor of the matrix.

2. We haveA ·adj(A) = det(A) ·In for all n×nmatrices
A.
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3. Cofactor expansion of a matrix along any row or col-
umn will yield the same result, although the individual
terms in the expansion along different rows or columns
can vary.

4. If A is an n× n matrix and c is a scalar, then

adj(cA) = c · adj(A).

5. If A and B are 2× 2 matrices, then

adj(A+ B) = adj(A)+ adj(B).

6. If A and B are 2× 2 matrices, then

adj(AB) = adj(A) · adj(B).

7. For every n, adj(In) = In.

Problems
For Problems 1–3, determine all minors and cofactors of the
given matrix.

1. A =
[

1 −3
2 4

]
.

2. A =

 1 −1 2

3 −1 4
2 1 5


.

3. A =

 2 10 3

0 −1 0
4 1 5


.

4. If

A =




1 3 −1 2
3 4 1 2
7 1 4 6
5 0 1 2


 ,

determine the minors M12,M31,M23,M42, and the
corresponding cofactors.

For Problems 5–10, use the Cofactor Expansion Theorem
to evaluate the given determinant along the specified row or
column.

5.
1 −2
1 3

, row 1.

6.
−1 2 3

1 4 −2
3 1 4

, column 3.

7.
2 1 −4
7 1 3
1 5 −2

, row 2.

8.
3 1 4
7 1 2
2 3 −5

, column 1.

9.
0 2 −3
−2 0 5

3 −5 0
, row 3.

10.

1 −2 3 0
4 0 7 −2
0 1 3 4
1 5 −2 0

, column 4.

For Problems 11–19, evaluate the given determinant using
the techniques of this section.

11.
1 0 −2
3 1 −1
7 2 5

.

12.
−1 2 3

0 1 4
2 −1 3

.

13.
2 −1 3
5 2 1
3 −3 7

.

14.
0 −2 1
2 0 −3
−1 3 0

.

15.

1 0 −1 0
0 1 0 −1
−1 0 −1 0

0 1 0 1

.

16.

2 −1 3 1
1 4 −2 3
0 2 −1 0
1 3 −2 4

.

17.

3 5 2 6
2 3 5 −5
7 5 −3 −16
9 −6 27 −12

.

18.

2 −7 4 3
5 5 −3 7
6 2 6 3
4 2 −4 5

.
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19.

2 0 −1 3 0
0 3 0 1 2
0 1 3 0 4
1 0 1 −1 0
3 0 2 0 5

.

20. If

A =




0 x y z

−x 0 1 −1
−y −1 0 1
−z 1 −1 0


 ,

show that det(A) = (x + y + z)2.

21. (a) Consider the 3 × 3 Vandermonde determinant
V (r1, r2, r3) defined by

V (r1, r2, r3) =
1 1 1
r1 r2 r3
r2

1 r
2
2 r

2
3

.

Show that

V (r1, r2, r3) = (r2 − r1)(r3 − r1)(r3 − r2).

(b) More generally, show that then×nVandermonde
determinant

V (r1, r2, . . . , rn) =

1 1 . . . 1
r1 r2 . . . rn
r2

1 r2
2 . . . r2

n
...

...
...

rn−1
1 rn−1

2 . . . rn−1
n

has value

V (r1, r2, . . . , rn) =
∏

1≤i<m≤n
(rm − ri).

For Problems 22–31, find (a) det(A), (b) the matrix of co-
factors MC , (c) adj(A), and, if possible, (d) A−1.

22. A =
[

3 1
4 5

]
.

23. A =
[−1 −2

4 1

]
.

24. A =
[

5 2
−15 −6

]
.

25. A =

 2 −3 0

2 1 5
0 −1 2


.

26. A =

−2 3 −1

2 1 5
0 2 3


.

27. A =

 1 −1 2

3 −1 4
5 1 7


.

28. A =

 0 1 2
−1 −1 3

1 −2 1


.

29. A =

 2 −3 5

1 2 1
0 7 −1


.

30. A =




1 1 1 1
−1 1 −1 1

1 1 −1 −1
−1 1 1 −1


.

31. A =




1 0 3 5
−2 1 1 3

3 9 0 2
2 0 3 −1


.

32. Let A =

 1 −2x 2x2

2x 1− 2x2 −2x
2x2 2x 1


.

(a) Show that det(A) = (1+ 2x2)3.

(b) Use the adjoint method to find A−1.

In Problems 33–35, find the specified element in the inverse
of the given matrix. Do not use elementary row operations.

33. A =

 1 1 1

1 2 2
1 2 3


; (3, 2)-element.

34. A =

 2 0 −1

2 1 1
3 −1 0


; (3, 1)-element.

35. A =




1 0 1 0
2 −1 1 3
0 1 −1 2
−1 1 2 0


; (2, 3)-element.

In Problems 36–38, find A−1.

36. A =
[

3et e2t

2et 2e2t

]
.

37. A =
[
et sin 2t −e−t cos 2t
et cos 2t e−t sin 2t

]
.
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38. A =

 et tet e−2t

et 2tet e−2t

et tet 2e−2t


.

39. If

A =

 1 2 3

3 4 5
4 5 6


 ,

compute the matrix product A · adj(A). What can you
conclude about det(A)?

For Problems 40–43, use Cramer’s rule to solve the given
linear system.

40.
2x1 − 3x2 = 2,
x1 + 2x2 = 4.

41.
3x1 − 2x2 + x3 = 4,
x1 + x2 − x3 = 2,
x1 + x3 = 1.

42.
x1 − 3x2 + x3 = 0,
x1 + 4x2 − x3 = 0,

2x1 + x2 − 3x3 = 0.

43.

x1 − 2x2 + 3x3 − x4 = 1,
2x1 + x3 = 2,
x1 + x2 − x4 = 0,

x2 − 2x3 + x4 = 3.

44. Use Cramer’s rule to determine x1 and x2 if

etx1 + e−2t x2 = 3 sin t,
etx1 − 2e−2t x2 = 4 cos t.

45. Determine the value of x2 such that

x1 + 4x2 − 2x3 + x4 = 2,
2x1 + 9x2 − 3x3 − 2x4 = 5,
x1 + 5x2 + x3 − x4 = 3,

3x1 + 14x2 + 7x3 − 2x4 = 6.

46. Find all solutions to the system

(b + c)x1 + a(x2 + x3) = a,

(c + a)x1 + b(x3 + x1) = b,

(a + b)x1 + c(x1 + x2) = c,

where a, b, c are constants. Make sure you consider all
cases (that is, those when there is a unique solution,
an infinite number of solutions, and no solutions).

47. Prove Equation (3.3.3).

48. � Let A be a randomly generated invertible 4× 4 ma-
trix. Verify the Cofactor Expansion Theorem for ex-
pansion along row 1.

49. � Let A be a randomly generated 4× 4 matrix. Verify
Equation (3.3.3) when i = 2 and j = 4.

50. � Let A be a randomly generated 5× 5 matrix. Deter-
mine adj(A) and compute A · adj(A). Use your result
to determine det(A).

51. � Solve the system of equations

1.21x1 + 3.42x2 + 2.15x3 = 3.25,
5.41x1 + 2.32x2 + 7.15x3 = 4.61,

21.63x1 + 3.51x2 + 9.22x3 = 9.93.

Round answers to two decimal places.

52. � Use Cramer’s rule to solve the system Ax = b if

A =




1 2 3 4 4
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2
4 4 3 2 1


 , and b =




68
−72
−87

79
43


 .

53. Verify that BA = In in the proof of Theorem 3.3.16.

3.4 Summary of Determinants

The primary aim of this section is to serve as a stand-alone introduction to determinants
for readers who desire only a cursory review of the major facts pertaining to determinants.
It may also be used as a review of the results derived in Sections 3.1–3.3.

Formulas for the Determinant

The determinant of an n × n matrix A, denoted det(A), is a scalar whose value can be
obtained in the following manner.

1. If A = [a11], then det(A) = a11.


