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32. {vy, v»}, where vy, v, are collinear vectors in R3. 34. Prove that

33. Prove that if S and S’ are subsets of a vector space V span{vi, v2, v3} = span{vy, v2}
such that § is a subset of §’, then span(S) is a subset

of span(S’).

if and only if v3 can be written as a linear combination
of v; and v;.

4.5

Example 4.5.1

Linear Dependence and Linear Independence

As indicated in the previous section, in analyzing a vector space we will be interested in
determining a spanning set. The reader has perhaps already noticed that a vector space
V can have many such spanning sets.

Observe that {(1, 0), (0, 1)}, {(1,0), (1, D}, and {(1, 0), (0, 1), (1, 2)} are all spanning
sets for R2. O

As another illustration, two different spanning sets for V = M>(R) were given in Exam-
ple 4.4.5 and the remark that followed. Given the abundance of spanning sets available
for a given vector space V, we are faced with a natural question: Is there a “best class
of” spanning sets to use? The answer, to a large degree, is “yes”. For instance, in Exam-
ple 4.5.1, the spanning set {(1, 0), (0, 1), (1, 2)} contains an “extra” vector, (1, 2), which
seems to be unnecessary for spanning R, since {(1, 0), (0, 1)} is already a spanning set.
In some sense, {(1, 0), (0, 1)} is a more efficient spanning set. It is what we call a mini-
mal spanning set, since it contains the minimum number of vectors needed to span the
vector space.’

But how will we know if we have found a minimal spanning set (assuming one
exists)? Returning to the example above, we have seen that

span{(1, 0), (0, 1)} = span{(1, 0), (0, 1), (1,2)} = R.

Observe that the vector (1, 2) is already a linear combination of (1, 0) and (0, 1), and
therefore it does not add any new vectors to the linear span of {(1, 0), (0, 1)}.

As a second example, consider the vectors vi = (1,1, 1), v, = (3, -2, 1), and
vz =4v] +vo = (7, 2,5). Itis easily verified that det([vy, v2, v3]) = 0. Consequently,
the three vectors lie in a plane (see Figure 4.5.1) and therefore, since they are not collinear,
the linear span of these three vectors is the whole of this plane. Furthermore, the same
plane is generated if we consider the linear span of v; and v, alone. As in the previous
example, the reason that v3 does not add any new vectors to the linear span of {vy, v»}
is that it is already a linear combination of v; and v;. It is not possible, however, to
generate all vectors in the plane by taking linear combinations of just one vector, as we
could generate only a line lying in the plane in that case. Consequently, {v{, v2} is a
minimal spanning set for the subspace of R? consisting of all points lying on the plane.

As a final example, recall from Example 1.2.16 that the solution space to the differ-
ential equation

y//+y:O

3Sincea single (nonzero) vector in R2 spans only the line through the origin along which it points, it cannot
span all of Rz; hence, the minimum number of vectors required to span RZis 2.
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x %7,2,0)
Figure 4.5.1: v3 = 4v| + v lies in the plane through the origin containing vy and v,, and so,
span{vy, vp, v3} = span{vy, va}.

can be written as span{yj, y»}, where y;(x) = cosx and y>(x) = sin x. However, if we
let y3(x) = 3 cosx — 2sin x, for instance, then {y;, y2, y3} is also a spanning set for the
solution space of the differential equation, since

span{y1, y2, 3} = {c1cosx + cpsinx + c3(3cosx —2sinx) : ¢y, c2,c3 € R}
= {(c1 +3c3)cosx + (cp — 2c3)sinx : ¢y, ¢, c3 € R}

{dicosx +dysinx : dy,dr € R}

= span{yy, y2}.

The reason that {y1, y2, y3} is not a minimal spanning set for the solution space is that
y3 is a linear combination of y; and y,, and therefore, as we have just shown, it does not
add any new vectors to the linear span of {cos x, sin x}.

More generally, it is not too difficult to extend the argument used in the preceding
examples to establish the following general result.

Let {vi, va, ..., v} be a set of at least two vectors in a vector space V. If one of the
vectors in the set is a linear combination of the other vectors in the set, then that vector
can be deleted from the given set of vectors and the linear span of the resulting set of

vectors will be the same as the linear span of {v{, vo, ..., v¢}.
Proof The proof of this result is left for the exercises (Problem 48). |
For instance, if v; is a linear combination of v,, v3, ..., Vi, then Theorem 4.5.2 says
that
span{vi, v, ..., Vi} = span{va, v3, ..., Vi}.

In this case, the set {vy, v, ..., v¢} is not a minimal spanning set.

To determine a minimal spanning set, the problem we face in view of Theorem 4.5.2
is that of determining when a vector in {vy, v2, ..., v} can be expressed as a linear

combination of the remaining vectors in the set. The correct formulation for solving this
problem requires the concepts of linear dependence and linear independence, which we
are now ready to introduce. First we consider linear dependence.
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DEFINITION 4.5.3

A finite nonempty set of vectors {vi, v2, ..., Vx} in a vector space V is said to be
linearly dependent if there exist scalars c1, ¢3, . . ., ¢k, not all zero, such that

civi+cavo + -+ v = 0.

Such a nontrivial linear combination of vectors is sometimes referred to as a linear
dependency among the vectors vy, va, ..., Vg.

A set of vectors that is not linearly dependent is called linearly independent. This can be
stated mathematically as follows:

DEFINITION 4.54

A finite, nonempty set of vectors {v{, vo, ..., vx} in a vector space V is said to be
linearly independent if the only values of the scalars ¢y, c3, ..., ¢t for which

cavit+eovo+ -+ avi =0

areci =cy=---=c¢, =0.

Remarks

1. It follows immediately from the preceding two definitions that a nonempty set of
vectors in a vector space V is linearly independent if and only if it is not linearly

dependent.
2. If{vy, va, ..., vi}isalinearly independent set of vectors, we sometimes informally
say that the vectors vy, v, .. ., Vi are themselves linearly independent. The same

remark applies to the linearly dependent condition as well.

Consider the simple case of a set containing a single vector v. If v = 0, then {v} is
linearly dependent, since for any nonzero scalar c1,

C10 =0.
On the other hand, if v # 0, then the only value of the scalar ¢| for which
c1V= 0

is ¢y = 0. Consequently, {v} is linearly independent. We can therefore state the next
theorem.

A set consisting of a single vector v in a vector space V is linearly dependent if and only
if v = 0. Therefore, any set consisting of a single nonzero vector is linearly independent.

We next establish that linear dependence of a set containing at least two vectors is
equivalent to the property that we are interested in—namely, that at least one vector in
the set can be expressed as a linear combination of the remaining vectors in the set.
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Figure 4.5.2: The set of vectors
{v1. v, v3} is linearly dependent
in R2, since v3 is a linear
combination of v{ and v,.

Proposition 4.5.7

Let{vy, va, ..., v} beasetofatleasttwo vectorsin a vector space V. Then {vy, v, ..., vt}
is linearly dependent if and only if at least one of the vectors in the set can be expressed
as a linear combination of the others.

Proof If{vy, va, ..., vi}is linearly dependent, then according to Definition 4.5.3, there
exist scalars ¢y, ¢2, ..., ¢k, not all zero, such that

civi +cavp + -4 v = 0.

Suppose that ¢; # 0. Then we can express v; as a linear combination of the other vectors
as follows:

1

Vi = _;(CIVI +cova+ o+ Cim1Viet + CipVigr + o0+ cevi).
1

Conversely, suppose that one of the vectors, say, v;, can be expressed as a linear combi-

nation of the remaining vectors. That is,

vi=civit+cva+---+cj—1Vj—1 +Cj41Vj41 + - - + Ck Vi
Adding (—1)v; to both sides of this equation yields
civi+eva+ - Fcjo1vjo1 —Vj+ iV + - F v = 0.

Since the coefficient of v; is —1 # 0, the set of vectors {vy, v, ..., vt} is linearly
dependent. [ ]

As far as the minimal-spanning-set idea is concerned, Theorems 4.5.6 and 4.5.2 tell
us that a linearly dependent spanning set for a (nontrivial) vector space V cannot be a
minimal spanning set. On the other hand, we will see in the next section that a linearly
independent spanning set for V must be a minimal spanning set for V. For the remainder
of this section, however, we focus more on the mechanics of determining whether a given
set of vectors is linearly independent or linearly dependent. Sometimes this can be done
by inspection. For example, Figure 4.5.2 illustrates that any set of three vectors in R? is
linearly dependent.

As another example, let V be the vector space of all functions defined on an interval
I.1f

fix) =1, fa(x) = 2sin® x, f3(x) = —5cos’ x,

then {f1, f2, f3} is linearly dependent in V, since the identity sin? x + cos?x = 1
implies that for all x € I,

1) = 3 /2(x) — 3 f3(x).
We can therefore conclude from Theorem 4.5.2 that
span{l, 2 sin x, —5 cos? x} = span{2 sin? x, —5 cos? x}.

In relatively simple examples, the following general results can be applied. They are a
direct consequence of the definition of linearly dependent vectors and are left for the
exercises (Problem 49).

Let V be a vector space.

1. Any set of two vectors in V is linearly dependent if and only if the vectors are
proportional.
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2. Any set of vectors in V containing the zero vector is linearly dependent.

Remark  We emphasize that the first result in Proposition 4.5.7 holds only for the
case of two vectors. It cannot be applied to sets containing more than two vectors.

Ifvi = (1,2,-9) and v, = (-2, —4, 18), then {vy, v} is linearly dependent in R3,
since vo = —2vj. Geometrically, v and v; lie on the same line. O

It

21 00 25
then {A1, Az, A3} is linearly dependent in M;(RR), since it contains the zero vector from

M>(R). O

For more complicated situations, we must resort to Definitions 4.5.3 and 4.5.4,
although conceptually it is always helpful to keep in mind that the essence of the problem
we are solving is to determine whether a vector in a given set can be expressed as a linear
combination of the remaining vectors in the set. We now give some examples to illustrate
the use of Definitions 4.5.3 and 4.5.4.

Ifvi=(,2,-1) vy =(2,—1,1),and v3 = (8, 1, 1), show that {vy, v2, v3} is linearly

dependent in R>, and determine the linear dependency relationship.

Solution: We must first establish that there are values of the scalars ¢y, c2, ¢3, not all
zero, such that

c1vi + vy + c3vy = 0. “4.5.1)
Substituting for the given vectors yields
(1,2, =)+ 22, -1, 1) +c3(8,1, 1) = (0,0,0).

That is,
(c1 +2c2+8¢3,2¢c1 —ca+c¢3, —c1 +c2+¢3) =(0,0,0).

Equating corresponding components on either side of this equation yields

c1 + 2¢p + 8¢3 =0,
2c1 — ¢+ 3 =0,
—c1+ ¢+ ¢3=0.

The reduced row-echelon form of the augmented matrix of this system is

1020
0130
0000

Consequently, the system has an infinite number of solutions for c1, ¢, ¢3, so the vectors
are linearly dependent.

In order to determine a specific linear dependency relationship, we proceed to find
c1, 2, and c3. Setting ¢3 = t, we have ¢ = —3f and ¢ = —2¢. Taking r = 1 and
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substituting these values for ¢y, ¢2, c3 into (4.5.1), we obtain the linear dependency
relationship
—2vi —3vy +v3 =0,

or equivalently,
3 1
Vl J— _§V2 + §V3,

which can be easily verified using the given expressions for vy, v, and v3. It follows
from Theorem 4.5.2 that

span{vy, v2, v3} = span{vy, v3}.

Geometrically, we can conclude that v; lies in the plane determined by the vectors v,
and v3. O

Determine whether the following matrices are linearly dependent or linearly independent

in Ma(R):
1 —1 21 1 -1
w=[3%o] w=[os] w=[aT])

Solution: The condition for determining whether these vectors are linearly dependent
or linearly independent,

c1A1 + Az + c3A3 = 02,

is equivalent in this case to

P-1], 2], [ -] _foo
Ul o|T203|7%2 1|7 |oo|

which is satisfied if and only if

c1 + 2c + c¢3 =0,

—c1+ - ¢3=0,
201 + 2C3 = 09
3¢cp + c¢3 = 0.

The reduced row-echelon form of the augmented matrix of this homogeneous system is

1000
0100
0010 |’
0000

which implies that the system has only the trivial solution ¢; = ¢ = ¢3 = 0. It follows
from Definition 4.5.4 that {A, A>, A3} is linearly independent. O

As a corollary to Theorem 4.5.2, we establish the following result.

Any nontrivial, finite set of linearly dependent vectors in a vector space V contains a
linearly independent subset that has the same linear span as the given set of vectors.
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Proof Since the given set is linearly dependent, at least one of the vectors in the set is a
linear combination of the remaining vectors, by Theorem 4.5.6. Thus, by Theorem 4.5.2,
we can delete that vector from the set, and the resulting set of vectors will span the same
subspace of V as the original set. If the resulting set is linearly independent, then we
are done. If not, then we can repeat the procedure to eliminate another vector in the
set. Continuing in this manner (with a finite number of iterations), we will obtain a
linearly independent set that spans the same subspace of V as the subspace spanned by
the original set of vectors. |

Remark  Corollary 4.5.12 is actually true even if the set of vectors in question is
infinite, but we shall not need to consider that case in this text. In the case of an infinite
set of vectors, other techniques are required for the proof.

Note that the linearly independent set obtained using the procedure given in the
previous theorem is not unique, and therefore the question arises whether the number
of vectors in any resulting linearly independent set is independent of the manner in
which the procedure is applied. We will give an affirmative answer to this question in
Section 4.6.

Let vi = (1,2,3),v2 = (=1,1,4),v3 = (3,3,2), and v4 = (=2, —4, —6). De-

termine a linearly independent set of vectors that spans the same subspace of R? as
span{vy, v2, v3, V4}.

Solution:  Setting
civi+cavo +c3v3+c4va =0

requires that
Cl(lv 2» 3) + 62(_11 17 4’) + 03(3, 31 2) + C4(_29 _41 _6) = (O» Oa 0)1
leading to the linear system

ci — ¢ +3c3 — 2¢c4 =0,
2c1 + ¢ 4 3¢3 — 4cq = 0,
3¢1 4+ 4¢r + 2¢3 — 6¢q4 = 0.

The augmented matrix of this system is

1 -13-20
2 13-40
3 42-60

and the reduced row-echelon form of the augmented matrix of this system is

10 2-20
01-1 00
00 0 00

The system has two free variables, c3 = s and c4 = £, and so {v{, v2, V3, v4} is linearly
dependent. Then ¢; = s and ¢; = 2t — 2s. So the general form of the solution is

2t —2s,s5,8,1t) =s(—2,1,1,0)4+1(2,0,0, 1).
Setting s = 1 and ¢ = 0 yields the linear combination

—2vi+ vy +v3 =0, “4.5.2)
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and setting s = 0 and ¢ = 1 yields the linear combination
2vi+ vy = 0. 4.5.3)

‘We can solve (4.5.2) for v3 in terms of v{ and v,, and we can solve (4.5.3) for v4 in terms
of vi. Hence, according to Theorem 4.5.2, we have

span{vy, v2, V3, V4} = span{vy, v2}.
By Proposition 4.5.7, v and v, are linearly independent, so {vi, vp} is the linearly

independent set we are seeking. Geometrically, the subspace of R spanned by v; and
v, is a plane, and the vectors v3 and v4 lie in this plane. O

Linear Dependence and Linear Independence in R”

Let {v{, V2, ..., Vi} be a set of vectors in R”, and let A denote the matrix that has
Vi, V2, ..., Vi as column vectors. Thus,
A=1[vi, v, ..., V] “4.54)

Since each of the given vectors is in R", it follows that A has n rows and is therefore an
n x k matrix.

The linear combination ¢1v| 4+ ¢2V2 + - - - + ¢, v = 0 can be written in matrix form
as (see Theorem 2.2.9)

Ac =0, 4.5.5)

where A is given in Equation (4.5.4) and ¢ = [c1 2 ... al”. Consequently, we can
state the following theorem and corollary:

Let vi, vo, ..., vi be vectors in R” and A = [v, Vo, ..., Vi]. Then {v{, vo, ..., v} is
linearly dependent if and only if the linear system Ac = 0 has a nontrivial solution.

Let vy, vp, ..., vy be vectors in R” and A = [vy, Vo, ..., Vk].

1. If k > n, then {vy, vo, ..., v} is linearly dependent.

2. If k = n, then {v1, vo, ..., v} is linearly dependent if and only if det(A) = 0.
Proof If k > n, the system (4.5.5) has an infinite number of solutions (see Corol-
lary 2.5.11), hence the vectors are linearly dependent by Theorem 4.5.14.

On the other hand, if kK = n, the system (4.5.5) is n x n, and hence, from Corollary
3.2.5, it has an infinite number of solutions if and only if det(A) = 0. [ |

Determine whether the given vectors are linearly dependent or linearly independent in
R*.

1' V] = (1’37_150)"72 = (2’91_1’3)"’3 = (49576’11)’V4 = (11_1’275)5
vs = (3,-2,6,7).

2' Vi = (1947 15 7)1 V) = (35 _51 27 3)7 V3 = (27 _19 67 9)a V4 = (_29 37 11 6)'
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Solution:

1. Since we have five vectors in R?, Corollary 4.5.15 implies that {vy, v2, v3, V4, V5}
is necessarily linearly dependent.

2. In this case, we have four vectors in R?, and therefore, we can use the determinant:

1

4 —
det(A) = det[vi, v2, v3, val =
7

W N D W

-2
3_
=
6

O N~ N

Since the determinant is nonzero, it follows from Corollary 4.5.15 that the given
set of vectors is linearly independent. O

Linear Independence of Functions

We now consider the general problem of determining whether or not a given set of
functions is linearly independent or linearly dependent. We begin by specializing the
general Definition 4.5.4 to the case of a set of functions defined on an interval /.

DEFINITION 4.5.17

The set of functions { f1, f>, ..., fi} is linearly independent on an interval / if and
only if the only values of the scalars ¢y, ¢3, . . ., ¢k such that

cafikx) +efox)+ -+ fr(x) =0, forall x € I, (4.5.6)
areci =cy=---=c¢ =0.

The main point to notice is that the condition (4.5.6) must hold for all x in /.

A key tool in deciding whether or not a collection of functions is linearly independent
on an interval / is the Wronskian. As we will see in Chapter 6, we can draw particularly
sharp conclusions from the Wronskian about the linear dependence or independence of
a family of solutions to a linear homogeneous differential equation.

DEFINITION 4.5.18

Let fi1, f2, ..., fr be functions in Ck’l(l ). The Wronskian of these functions is
the order k determinant defined by

fi(x) L&) ..o filx)
fi(x) Hx) o i)
WifL, fao -0, filx) = : . .

Ve 206 o 25 V)

Remark  Notice that the Wronskian is a function defined on /. Also note that this
function depends on the order of the functions in the Wronskian. For example, using
properties of determinants,

W[f2» flv ] fk](-x) = _W[flv f27 ] fk](-x)
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If fi(x) =sinx and f(x) = cosx on (—00, 00), then

sinx  COSXx
COSXx —sinx

WL, f21(x)

= (sinx)(—sinx) — (cos x)(cos x)

—(sin2x~|—coszx) =—1. O

If fi(x) = x, fo(x) = x2, and f3(x) = x> on (—o0, 00), then

2x3

X X
WLfi, fo, 310 =1 2x 3x2|=x(12x2 —6x%) — (6x° —2x%) = 2x°. O
02 6x

We can now state and prove the main result about the Wronskian.

WL RPAR  Let f1, f, ..., fi be functions in CK=1(1). If W[f1, f>, ..., fi] is nonzero at some

point xg in 7, then { f1, f2, ..., fx} is linearly independent on /.

Proof To apply Definition 4.5.17, assume that

crfix)+efox)+ -+ fk(x) =0,

for all x in /. Then, differentiating k — 1 times yields the linear system

c1 f1(x) + 2 fa(x) + -+ e fi(x) =0,
cafix)  Hoafj)  +--F+afiky =0,

aff e + aff P+ +affVw =0,

where the unknowns in the system are cy, ¢, ..., cx. We wish to show thatc; = ¢ =
- = ¢ = 0. The determinant of the matrix of coefficients of this system is just

WIfi, f2,..., fil(x). Consequently, if W[ fi, f2,..., fxl(xo) # O for some xp in I,
then the determinant of the matrix of coefficients of the system is nonzero at that point, and

therefore the only solution to the system is the trivial solutionc; = ¢ =--- = ¢, =0.
That is, the given set of functions is linearly independent on /. [ ]
Remarks

1. Notice thatit is only necessary for W[ f1, f2, ..., fil(x) to be nonzero at one point

in [ for { f1, f2, ..., fx} to be linearly independent on 1.

2. Theorem 4.5.21 does not say that if W[ f1, f>, ..., fil(x) = 0 for every x in I,
then { f1, f2, ..., fr}islinearly dependent on /. As we will see in the next example
below, the Wronskian of a linearly independent set of functions on an interval / can
be identically zero on /. Instead, the logical equivalent of the preceding theorem
is: If { f1, f2, ..., fx} is linearly dependent on I, then W[ f1, f>, ..., frl(x) =0
at every point of /.



4.5  Linear Dependence and Linear Independence 277

It W[ fi1, fa, ..., fxl(x) = 0 for all x in 7, Theorem 4.5.21 gives no information

as to the linear dependence or independence of { f1, f2,..., fix} on I.

Example 4.5.22| Determine whether the following functions are linearly dependent or linearly indepen-
denton I = (—00, 00).

@) fi(x) =", fo(x) = x%e".
(b) filx) =x, fr(x) = x + x2, f3(x) =2x — x°.

(© fix)=x2 fr(x) ={ 2

2x2, ifx >0,
—x=, ifx <O.

Solution:

(a)

(b)

(0

e x%et 2,2 22 2
X X X

= (x4 2x) —x“e”t =2xe”t.

e e (x? + 2x) ( )

WLf1, f21(x) =

Since W[ f1, f21(x) # 0 (except at x = 0), the functions are linearly independent
on (—00, 00).

X x+x%2x —x?
Wifi, fo, 3lx) =1 1+2x 2—2x
0o 2 -2

=x[(—=2)(1 4+2x) — 212 — 2x)]
- -(—2)(16 + xz) —22x — xz)] =0.

Thus, no conclusion can be drawn from Theorem 4.5.21. However, a closer in-
spection of the functions reveals, for example, that

f2=3h1—f3.
Consequently, the functions are linearly dependent on (—o0, 00).
If x > 0, then
Wif. Al =2 2 =0
1. J2 T 2x 4x |7
whereas if x < 0, then
2 2
X< —x
Wifi, LI =1, 5 |= 0

Thus, W[ f1, f21(x) = 0 for all x in (—o0, 00), so no conclusion can be drawn
from Theorem 4.5.21. Again we take a closer look at the given functions. They
are sketched in Figure 4.5.3. In this case, we see that on the interval (—oo, 0), the
functions are linearly dependent, since

fi+ fa=0.
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y
A

yZﬁ(x)\:fxz 710 = 26) on [0.)

y=fil) = A0 = htoon =

yEhiw =2
> x
Ax) = ~) on (2,0)

y=hw = ¢

Figure 4.5.3: Two functions that are linearly independent on (—o0, 00), but whose
Wronskian is identically zero on that interval.

They are also linearly dependent on [0, 00), since on this interval we have

2fi— f2=0.
The key point is to realize that there is no set of nonzero constants cy, ¢, for which

citfi+cfr=0

holds for all x in (—oo, 00). Hence, the given functions are linearly independent
on (—o00, 00). This illustrates our second remark following Theorem 4.5.21, and
it emphasizes the importance of the role played by the interval / when discussing
linear dependence and linear independence of functions. A collection of functions
may be linearly independent on an interval /1, but linearly dependent on another
interval I5. ]

It might appear at this stage that the usefulness of the Wronskian is questionable,
since if W[ f1, f2, ..., fi] vanishes on an interval 7, then no conclusion can be drawn
as to the linear dependence or linear independence of the functions fi, fa, ..., fx on
1. However, the real power of the Wronskian is in its application to solutions of linear
differential equations of the form

Yy a1 (x)y" D a1 (x)y + an(x)y = 0. 4.5.7)

In Chapter 6, we will establish that if we have n functions that are solutions of an equation
of the form (4.5.7) on an interval I, then if the Wronskian of these functions is identically
zero on I, the functions are indeed linearly dependent on /. Thus, the Wronskian does
completely characterize the linear dependence or linear independence of solutions of
such equations. This is a fundamental result in the theory of linear differential equations.

Key Terms

Linearly dependent set, Linear dependency, Linearly inde-
pendent set, Minimal spanning set, Wronskian of a set of

sets of one or two vectors, you should be able to do
this at a glance. If the set is linearly dependent, be able
to determine a linear dependency relationship among
the vectors.

functions.
Skills .
e Be able to take a linearly dependent set of vectors and
e Be able to determine whether a given finite set of vec- remove vectors until it becomes a linearly independent

tors is linearly dependent or linearly independent. For set of vectors with the same span as the original set.



e Be able to produce a linearly independent set of vec-
tors that spans a given subspace of a vector space V.

e Be able to conclude immediately that a set of k vectors
in R" is linearly dependent if k > n, and know what
can be said in the case where k = n as well.

e Know what information the Wronskian does (and does
not) give about the linear dependence or linear inde-
pendence of a set of functions on an interval /.

True-False Review

For Questions 1-9, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. Every vector space V possesses a unique minimal
spanning set.

. The set of column vectors of a 5 x 7 matrix A must be
linearly dependent.

. The set of column vectors of a 7 x 5 matrix A must be
linearly independent.

. Any nonempty subset of a linearly independent set of
vectors is linearly independent.

. If the Wronskian of a set of functions is nonzero at
some point xg in an interval I, then the set of func-
tions is linearly independent.

. If it is possible to express one of the vectors in a set
S as a linear combination of the others, then S is a
linearly dependent set.

. If a set of vectors S in a vector space V contains a
linearly dependent subset, then S is itself a linearly
dependent set.

. A set of three vectors in a vector space V is linearly de-
pendent if and only if all three vectors are proportional
to one another.

. If the Wronskian of a set of functions is identically
zero at every point of an interval /, then the set of
functions is linearly dependent.
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Problems

For Problems 1-9, determine whether the given set of vectors
is linearly independent or linearly dependent in R”. In the
case of linear dependence, find a dependency relationship.

1. {(1,-1), 1, D}

- {2, -1),(3,2), 0, D}

. {(1,—-1,0), (0,1, -1), (1, 1, D}.

. {(1,2,3),(1,—-1,2), (1, =4, D}.

. {(=2,4,-6), (3, —6,9)}.

. {(1,-1,2),(2,1,0)}.

. {(—=1,1,2),(0,2,-1), (3, 1,2), (-1, -1, D}.
. {(1,-1,2,3),(2,—-1,1,-1), (-1, 1, 1, D)}.

o L N SNt A WD

. {(2’ _17 0’ 1)7 (17 07 _15 2)9 (07 37 15 2)7
(—-1,1,2, H}.

[y
<

. Letvy =(1,2,3), v, = (4,5,6),vz = (7, 8,9). De-
termine whether {v{, v, v3} is linearly independent in
R3. Describe

span{vy, v, v3}

geometrically.

11. Consider the vectors vi = (2, —1, 5),

V2 = (15 37 _4)’ V3 = (_3, _9, 12) in R3.
(a) Show that {vy, v, v3} is linearly dependent.

(b) Is vi € span{vs, v3}? Draw a picture illustrating
your answer.

12. Determine all values of the constant k for which the

vectors (1, 1, k), (0, 2, k), and (1, k, 6) are linearly de-
pendent in R3.

For Problems 13-14, determine all values of the constant k
for which the given set of vectors is linearly independent in
R4,

13. {(1,0,1,k), (=1,0,k, 1), (2,0, 1, 3)}.
14' {(19 1’07 _1)7 (17k5 17 1)7 (27 l’kv 1)7 (_17 15 17k)}'

For Problems 15-17, determine whether the given set of vec-
tors is linearly independent in M;(R).

e [3 1]
1) [1]

11
01

2 -1
0 1

36

15.A1=[ 04

—12

16.A1=[ 13
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e [2]-[3)

For Problems 18-19, determine whether the given set of vec-
tors is linearly independent in P;.

—-11

17.A1=|: 21

18. pi(x) =1—x, pr(x)=1+x.
19. pi(x) =243x, pa(x) =4+ 06x.
20. Show that the vectors

p1(x) =a+bx and pr(x) =c+dx

are linearly independent in Pj if and only if the con-
stants a, b, c, d satisfy ad — bc # 0.

21. If fi(x) = cos2x, fo(x) = sin? x, f3(x) = cos®x,
determine whether {f1, f2, f3} is linearly dependent

or linearly independent in C°°(—o0, 00).

For Problems 22-28, determine a linearly independent set of
vectors that spans the same subspace of V as that spanned
by the original set of vectors.

22. V. =R3{(1,2,3),(-3,4,5), (1, %, )}
23. V =R3,{(3,1,5),(0,0,0), (1,2, —1), (—1,2,3)}.
24. Vv =R3{1,1,1),(1,—-1,1),(1,-3,1),3,1,2)}.
25. V = R4,
{1, 1,-1,1),2,—1,3,1), (1, 1,2, 1), (2, =1, 2, D)}

26. V = My(R),

IRRIEEIR |

3400 s7]0|11]]

27. V=P,{2—5x,3+7x,4 — x}.

28. V=P, 24+ x2,4 —2x+3x%, 1+ x).

For Problems 29-33, use the Wronskian to show that the
given functions are linearly independent on the given inter-
val I.

29.
30.

) =1, f(x) =x, f5(x) =x%, [ = (—00, 0).

fi(x) =sinx, fo(x) =cosx, f3(x) =tanx,
I =(—m/2,1/2).

3. fix) = 1, fr(x) = 3x, f3(x) = x> — 1,1 =
(—00, 00).

32, fix) = ¥, Hx) = & fx) = e F 1 =
(—00, 0).

33.

x2,

3x3,

ifx >0,

ifx <O,

fikx) =

fo(x) = 7x2, I = (—o0, 00).

For Problems 34-36, show that the Wronskian of the
given functions is identically zero on (—o00, 00). Determine
whether the functions are linearly independent or linearly
dependent on that interval.

M. fix) =1, fL(x) =x, f3(x) =2x — 1.
35. filx) =¢€*, fa(x) =€, f3(x) = coshx.
36. fi(x) = 2x3,
5x3, ifx >0,
falx) = {—3x3, if x <O.
37. Consider the functions fi(x) = x,
x, ifx>0,
o) = {—x, ifx <0.

(a) Show that f» is not in C!(—o0, 00).

(b) Show that{ f1, f>}islinearly dependent on the in-
tervals (—oo, 0) and [0, 00), while itis linearly in-
dependent on the interval (—oo, 00). Justify your

results by making a sketch showing both of the
functions.

38. Determine whether the functions fj(x) = x,

if x #0,
if x =0.

'x’
X) =
f2(x) {17
are linearly dependent or linearly independent on I =
(—00, 00).

39.

Show that the functions
x—1, ifx>1,

2x — 1), ifx <1,

Silx) = {
f2(x) = 2x, fa(x) = 3 form a linearly independent
set on (—o0, 00). Determine all intervals on which
{f1, f2, f3} is linearly dependent.



44. Letvy, v, ..

40. (a) Show that {1, x, x2, x3} is linearly independent

on every interval.

(b) If fr(x) = x* fork = 0,1,...,n, show that
{fo, f1, ..., fu}is linearly independent on every
interval for all fixed n.

41. (a) Show that the functions

fikx) =€, ) =€, fi(x) =€
have Wronskian
1 11
WAL, fo. f31(x) = 1243050y
72 p2 2
17273

= e g — 1) (rs = 2)(r2 = 1),

and hence determine the conditions on rq, rp, r3
such that { f1, f2, f3} is linearly independent on
every interval.

(b) More generally, show that the set of functions

{erlx’erzx’ .-"ernX}

is linearly independent on every interval if and
only if all of the r; are distinct. [Hint: Show that
the Wronskian of the given functions is a multiple
of the n x n Vandermonde determinant, and then
use Problem 21 in Section 3.3.]

42. Let {v{, v»} be a linearly independent set in a vector

space V,and letv = av| + vo, W = v| + a vy, where
« is a constant. Use Definition 4.5.4 to determine all
values of « for which {v, w} is linearly independent.

43. If v; and v are vectors in a vector space V, and

up, Uy, u3 are each linear combinations of them, prove
that {u, up, us} is linearly dependent.

., V; beasetof linearly independent vec-
tors in a vector space V and suppose that the vectors
up, up, ..., u, are each linear combinations of them.
It follows that we can write

m
uk:Zaikvi, k=1,2,...,n,
i=1

for appropriate constants a;y.

45.

46.

47.

48.

49.

50.

51.
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(a) If n > m, prove that {uy, uy, ..
dependent on V.

., u,} is linearly

(b) If n = m, prove that {uy, uy, ..., u,} is linearly
independent in V if and only if det[a;;] # 0.

(¢) If n < m, prove that {uy, uy, ..., u,} is linearly
independent in V if and only if rank(A) = n,
where A = [q;;].

(d) Which result from this section do these results
generalize?

Prove from the definition of “linearly independent”
that if {v{, vz, ...,Vv,} is linearly independent and
if A is an invertible n x n matrix, then the set
{Avy, Ava, ..., Av,} is linearly independent.

Prove that if {v{, vo} is linearly independent and v3
is not in span{vy, vo}, then {vy, vp, v3} is linearly
independent.

Generalizing the previous exercise, prove that if
{vi, Vo, ..., vt} is linearly independent and v is
notin span{vy, va, ..., Vg}, then {vy, vo, ..., Vgy1}is
linearly independent.

Prove Theorem 4.5.2.

Prove Proposition 4.5.7.

Prove that if {vy, vo, ..., v¢} spans a vector space V,
then for every vector vin V, {v, vi, vo, ..., v¢} is lin-
early dependent.

Prove thatif V. = P, and S = {p1, p2,..., pr}is a

set of vectors in V each of a different degree, then S is
linearly independent. [Hint: Assume without loss of
generality that the polynomials are ordered in descend-
ing degree: deg(p;) > deg(p2) > --- > deg(px).
Assuming that c;p1 + copa + -+ + ckpr = 0, first
show that ¢ is zero by examining the highest degree.
Then repeat for lower degrees to show successively
that c; = 0, ¢c3 = 0, and so on.]

4.6

Bases and Dimension

The results of the previous section show that if a minimal spanning set exists in a
(nontrivial) vector space V, it cannot be linearly dependent. Therefore if we are looking
for minimal spanning sets for V, we should focus our attention on spanning sets that are
linearly independent. One of the results of this section establishes that every spanning
set for V that is linearly independent is indeed a minimal spanning set. Such a set will be



