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32. {v1, v2}, where v1, v2 are collinear vectors in R
3.

33. Prove that if S and S′ are subsets of a vector space V
such that S is a subset of S′, then span(S) is a subset
of span(S′).

34. Prove that

span{v1, v2, v3} = span{v1, v2}
if and only if v3 can be written as a linear combination
of v1 and v2.

4.5 Linear Dependence and Linear Independence

As indicated in the previous section, in analyzing a vector space we will be interested in
determining a spanning set. The reader has perhaps already noticed that a vector space
V can have many such spanning sets.

Example 4.5.1 Observe that {(1, 0), (0, 1)}, {(1, 0), (1, 1)}, and {(1, 0), (0, 1), (1, 2)} are all spanning

sets for R
2. �

As another illustration, two different spanning sets for V = M2(R)were given in Exam-
ple 4.4.5 and the remark that followed. Given the abundance of spanning sets available
for a given vector space V , we are faced with a natural question: Is there a “best class
of” spanning sets to use? The answer, to a large degree, is “yes”. For instance, in Exam-
ple 4.5.1, the spanning set {(1, 0), (0, 1), (1, 2)} contains an “extra” vector, (1, 2), which
seems to be unnecessary for spanning R

2, since {(1, 0), (0, 1)} is already a spanning set.
In some sense, {(1, 0), (0, 1)} is a more efficient spanning set. It is what we call a mini-
mal spanning set, since it contains the minimum number of vectors needed to span the
vector space.3

But how will we know if we have found a minimal spanning set (assuming one
exists)? Returning to the example above, we have seen that

span{(1, 0), (0, 1)} = span{(1, 0), (0, 1), (1, 2)} = R
2.

Observe that the vector (1, 2) is already a linear combination of (1, 0) and (0, 1), and
therefore it does not add any new vectors to the linear span of {(1, 0), (0, 1)}.

As a second example, consider the vectors v1 = (1, 1, 1), v2 = (3,−2, 1), and
v3 = 4v1 + v2 = (7, 2, 5). It is easily verified that det([v1, v2, v3]) = 0. Consequently,
the three vectors lie in a plane (see Figure 4.5.1) and therefore, since they are not collinear,
the linear span of these three vectors is the whole of this plane. Furthermore, the same
plane is generated if we consider the linear span of v1 and v2 alone. As in the previous
example, the reason that v3 does not add any new vectors to the linear span of {v1, v2}
is that it is already a linear combination of v1 and v2. It is not possible, however, to
generate all vectors in the plane by taking linear combinations of just one vector, as we
could generate only a line lying in the plane in that case. Consequently, {v1, v2} is a
minimal spanning set for the subspace of R

3 consisting of all points lying on the plane.
As a final example, recall from Example 1.2.16 that the solution space to the differ-

ential equation

y′′ + y = 0

3Since a single (nonzero) vector in R
2 spans only the line through the origin along which it points, it cannot

span all of R
2; hence, the minimum number of vectors required to span R

2 is 2.
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(7, 2, 5)

(3,�2, 1)

(3,�2, 0) (1, 1, 0)

(1, 1, 1)

(7, 2, 0)

v3 � 4v1 � v2

v1v2

Figure 4.5.1: v3 = 4v1 + v2 lies in the plane through the origin containing v1 and v2, and so,
span{v1, v2, v3} = span{v1, v2}.

can be written as span{y1, y2}, where y1(x) = cos x and y2(x) = sin x. However, if we
let y3(x) = 3 cos x − 2 sin x, for instance, then {y1, y2, y3} is also a spanning set for the
solution space of the differential equation, since

span{y1, y2, y3} = {c1 cos x + c2 sin x + c3(3 cos x − 2 sin x) : c1, c2, c3 ∈ R}
= {(c1 + 3c3) cos x + (c2 − 2c3) sin x : c1, c2, c3 ∈ R}
= {d1 cos x + d2 sin x : d1, d2 ∈ R}
= span{y1, y2}.

The reason that {y1, y2, y3} is not a minimal spanning set for the solution space is that
y3 is a linear combination of y1 and y2, and therefore, as we have just shown, it does not
add any new vectors to the linear span of {cos x, sin x}.

More generally, it is not too difficult to extend the argument used in the preceding
examples to establish the following general result.

Theorem 4.5.2 Let {v1, v2, . . . , vk} be a set of at least two vectors in a vector space V . If one of the
vectors in the set is a linear combination of the other vectors in the set, then that vector
can be deleted from the given set of vectors and the linear span of the resulting set of
vectors will be the same as the linear span of {v1, v2, . . . , vk}.

Proof The proof of this result is left for the exercises (Problem 48).

For instance, if v1 is a linear combination of v2, v3, . . . , vk , then Theorem 4.5.2 says
that

span{v1, v2, . . . , vk} = span{v2, v3, . . . , vk}.
In this case, the set {v1, v2, . . . , vk} is not a minimal spanning set.

To determine a minimal spanning set, the problem we face in view of Theorem 4.5.2
is that of determining when a vector in {v1, v2, . . . , vk} can be expressed as a linear
combination of the remaining vectors in the set. The correct formulation for solving this
problem requires the concepts of linear dependence and linear independence, which we
are now ready to introduce. First we consider linear dependence.
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DEFINITION 4.5.3

A finite nonempty set of vectors {v1, v2, . . . , vk} in a vector space V is said to be
linearly dependent if there exist scalars c1, c2, . . . , ck , not all zero, such that

c1v1 + c2v2 + · · · + ckvk = 0.

Such a nontrivial linear combination of vectors is sometimes referred to as a linear
dependency among the vectors v1, v2, . . . , vk .

A set of vectors that is not linearly dependent is called linearly independent. This can be
stated mathematically as follows:

DEFINITION 4.5.4

A finite, nonempty set of vectors {v1, v2, . . . , vk} in a vector space V is said to be
linearly independent if the only values of the scalars c1, c2, . . . , ck for which

c1v1 + c2v2 + · · · + ckvk = 0

are c1 = c2 = · · · = ck = 0.

Remarks

1. It follows immediately from the preceding two definitions that a nonempty set of
vectors in a vector space V is linearly independent if and only if it is not linearly
dependent.

2. If {v1, v2, . . . , vk} is a linearly independent set of vectors, we sometimes informally
say that the vectors v1, v2, . . . , vk are themselves linearly independent. The same
remark applies to the linearly dependent condition as well.

Consider the simple case of a set containing a single vector v. If v = 0, then {v} is
linearly dependent, since for any nonzero scalar c1,

c10 = 0.

On the other hand, if v �= 0, then the only value of the scalar c1 for which

c1v = 0

is c1 = 0. Consequently, {v} is linearly independent. We can therefore state the next
theorem.

Theorem 4.5.5 A set consisting of a single vector v in a vector space V is linearly dependent if and only
if v = 0. Therefore, any set consisting of a single nonzero vector is linearly independent.

We next establish that linear dependence of a set containing at least two vectors is
equivalent to the property that we are interested in—namely, that at least one vector in
the set can be expressed as a linear combination of the remaining vectors in the set.



“main”
2007/2/16
page 270

�

�

�

�

�

�

�

�

270 CHAPTER 4 Vector Spaces

Theorem 4.5.6 Let {v1, v2, . . . , vk}be a set of at least two vectors in a vector spaceV . Then {v1, v2, . . . , vk}
is linearly dependent if and only if at least one of the vectors in the set can be expressed
as a linear combination of the others.

Proof If {v1, v2, . . . , vk} is linearly dependent, then according to Definition 4.5.3, there
exist scalars c1, c2, . . . , ck , not all zero, such that

c1v1 + c2v2 + · · · + ckvk = 0.

Suppose that ci �= 0. Then we can express vi as a linear combination of the other vectors
as follows:

vi = − 1

ci
(c1v1 + c2v2 + · · · + ci−1vi−1 + ci+1vi+1 + · · · + ckvk).

Conversely, suppose that one of the vectors, say, vj , can be expressed as a linear combi-
nation of the remaining vectors. That is,

vj = c1v1 + c2v2 + · · · + cj−1vj−1 + cj+1vj+1 + · · · + ckvk.
Adding (−1)vj to both sides of this equation yields

c1v1 + c2v2 + · · · + cj−1vj−1 − vj + cj+1vj+1 + · · · + ckvk = 0.

Since the coefficient of vj is −1 �= 0, the set of vectors {v1, v2, . . . , vk} is linearly
dependent.

As far as the minimal-spanning-set idea is concerned, Theorems 4.5.6 and 4.5.2 tell
us that a linearly dependent spanning set for a (nontrivial) vector space V cannot be a
minimal spanning set. On the other hand, we will see in the next section that a linearly
independent spanning set for V must be a minimal spanning set for V . For the remainder
of this section, however, we focus more on the mechanics of determining whether a given
set of vectors is linearly independent or linearly dependent. Sometimes this can be done
by inspection. For example, Figure 4.5.2 illustrates that any set of three vectors in R

2 is
linearly dependent.

x

y

v1

v2

v3

Figure 4.5.2: The set of vectors
{v1, v2, v3} is linearly dependent
in R

2, since v3 is a linear
combination of v1 and v2.

As another example, let V be the vector space of all functions defined on an interval
I . If

f1(x) = 1, f2(x) = 2 sin2 x, f3(x) = −5 cos2 x,

then {f1, f2, f3} is linearly dependent in V , since the identity sin2 x + cos2 x = 1
implies that for all x ∈ I ,

f1(x) = 1
2f2(x)− 1

5f3(x).

We can therefore conclude from Theorem 4.5.2 that

span{1, 2 sin2 x,−5 cos2 x} = span{2 sin2 x,−5 cos2 x}.
In relatively simple examples, the following general results can be applied. They are a
direct consequence of the definition of linearly dependent vectors and are left for the
exercises (Problem 49).

Proposition 4.5.7 Let V be a vector space.

1. Any set of two vectors in V is linearly dependent if and only if the vectors are
proportional.
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2. Any set of vectors in V containing the zero vector is linearly dependent.

Remark We emphasize that the first result in Proposition 4.5.7 holds only for the
case of two vectors. It cannot be applied to sets containing more than two vectors.

Example 4.5.8 If v1 = (1, 2,−9) and v2 = (−2,−4, 18), then {v1, v2} is linearly dependent in R
3,

since v2 = −2v1. Geometrically, v1 and v2 lie on the same line. �

Example 4.5.9 If

A1 =
[

2 1
3 4

]
, A2 =

[
0 0
0 0

]
, A3 =

[
2 5
−3 2

]
,

then {A1, A2, A3} is linearly dependent inM2(R), since it contains the zero vector from
M2(R). �

For more complicated situations, we must resort to Definitions 4.5.3 and 4.5.4,
although conceptually it is always helpful to keep in mind that the essence of the problem
we are solving is to determine whether a vector in a given set can be expressed as a linear
combination of the remaining vectors in the set. We now give some examples to illustrate
the use of Definitions 4.5.3 and 4.5.4.

Example 4.5.10 If v1 = (1, 2,−1) v2 = (2,−1, 1), and v3 = (8, 1, 1), show that {v1, v2, v3} is linearly

dependent in R
3, and determine the linear dependency relationship.

Solution: We must first establish that there are values of the scalars c1, c2, c3, not all
zero, such that

c1v1 + c2v2 + c3v3 = 0. (4.5.1)

Substituting for the given vectors yields

c1(1, 2,−1)+ c2(2,−1, 1)+ c3(8, 1, 1) = (0, 0, 0).

That is,
(c1 + 2c2 + 8c3, 2c1 − c2 + c3,−c1 + c2 + c3) = (0, 0, 0).

Equating corresponding components on either side of this equation yields

c1 + 2c2 + 8c3 = 0,
2c1 − c2 + c3 = 0,
−c1 + c2 + c3 = 0.

The reduced row-echelon form of the augmented matrix of this system is
 1 0 2 0

0 1 3 0
0 0 0 0


 .

Consequently, the system has an infinite number of solutions for c1, c2, c3, so the vectors
are linearly dependent.

In order to determine a specific linear dependency relationship, we proceed to find
c1, c2, and c3. Setting c3 = t , we have c2 = −3t and c1 = −2t . Taking t = 1 and
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substituting these values for c1, c2, c3 into (4.5.1), we obtain the linear dependency
relationship

−2v1 − 3v2 + v3 = 0,

or equivalently,
v1 = − 3

2 v2 + 1
2 v3,

which can be easily verified using the given expressions for v1, v2, and v3. It follows
from Theorem 4.5.2 that

span{v1, v2, v3} = span{v2, v3}.
Geometrically, we can conclude that v1 lies in the plane determined by the vectors v2
and v3. �

Example 4.5.11 Determine whether the following matrices are linearly dependent or linearly independent
in M2(R):

A1 =
[

1 −1
2 0

]
, A2 =

[
2 1
0 3

]
, A3 =

[
1 −1
2 1

]
.

Solution: The condition for determining whether these vectors are linearly dependent
or linearly independent,

c1A1 + c2A2 + c3A3 = 02,

is equivalent in this case to

c1

[
1 −1
2 0

]
+ c2

[
2 1
0 3

]
+ c3

[
1 −1
2 1

]
=
[

0 0
0 0

]
,

which is satisfied if and only if

c1 + 2c2 + c3 = 0,
−c1 + c2 − c3 = 0,
2c1 + 2c3 = 0,

3c2 + c3 = 0.

The reduced row-echelon form of the augmented matrix of this homogeneous system is


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 ,

which implies that the system has only the trivial solution c1 = c2 = c3 = 0. It follows
from Definition 4.5.4 that {A1, A2, A3} is linearly independent. �

As a corollary to Theorem 4.5.2, we establish the following result.

Corollary 4.5.12 Any nontrivial, finite set of linearly dependent vectors in a vector space V contains a
linearly independent subset that has the same linear span as the given set of vectors.
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Proof Since the given set is linearly dependent, at least one of the vectors in the set is a
linear combination of the remaining vectors, by Theorem 4.5.6. Thus, by Theorem 4.5.2,
we can delete that vector from the set, and the resulting set of vectors will span the same
subspace of V as the original set. If the resulting set is linearly independent, then we
are done. If not, then we can repeat the procedure to eliminate another vector in the
set. Continuing in this manner (with a finite number of iterations), we will obtain a
linearly independent set that spans the same subspace of V as the subspace spanned by
the original set of vectors.

Remark Corollary 4.5.12 is actually true even if the set of vectors in question is
infinite, but we shall not need to consider that case in this text. In the case of an infinite
set of vectors, other techniques are required for the proof.

Note that the linearly independent set obtained using the procedure given in the
previous theorem is not unique, and therefore the question arises whether the number
of vectors in any resulting linearly independent set is independent of the manner in
which the procedure is applied. We will give an affirmative answer to this question in
Section 4.6.

Example 4.5.13 Let v1 = (1, 2, 3), v2 = (−1, 1, 4), v3 = (3, 3, 2), and v4 = (−2,−4,−6). De-

termine a linearly independent set of vectors that spans the same subspace of R
3 as

span{v1, v2, v3, v4}.
Solution: Setting

c1v1 + c2v2 + c3v3 + c4v4 = 0

requires that

c1(1, 2, 3)+ c2(−1, 1, 4)+ c3(3, 3, 2)+ c4(−2,−4,−6) = (0, 0, 0),

leading to the linear system

c1 − c2 + 3c3 − 2c4 = 0,
2c1 + c2 + 3c3 − 4c4 = 0,
3c1 + 4c2 + 2c3 − 6c4 = 0.

The augmented matrix of this system is
 1 −1 3 −2 0

2 1 3 −4 0
3 4 2 −6 0




and the reduced row-echelon form of the augmented matrix of this system is
 1 0 2 −2 0

0 1 −1 0 0
0 0 0 0 0


 .

The system has two free variables, c3 = s and c4 = t , and so {v1, v2, v3, v4} is linearly
dependent. Then c2 = s and c1 = 2t − 2s. So the general form of the solution is

(2t − 2s, s, s, t) = s(−2, 1, 1, 0)+ t (2, 0, 0, 1).

Setting s = 1 and t = 0 yields the linear combination

−2v1 + v2 + v3 = 0, (4.5.2)
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and setting s = 0 and t = 1 yields the linear combination

2v1 + v4 = 0. (4.5.3)

We can solve (4.5.2) for v3 in terms of v1 and v2, and we can solve (4.5.3) for v4 in terms
of v1. Hence, according to Theorem 4.5.2, we have

span{v1, v2, v3, v4} = span{v1, v2}.
By Proposition 4.5.7, v1 and v2 are linearly independent, so {v1, v2} is the linearly
independent set we are seeking. Geometrically, the subspace of R

3 spanned by v1 and
v2 is a plane, and the vectors v3 and v4 lie in this plane. �

Linear Dependence and Linear Independence in R
n

Let {v1, v2, . . . , vk} be a set of vectors in R
n, and let A denote the matrix that has

v1, v2, . . . , vk as column vectors. Thus,

A = [v1, v2, . . . , vk]. (4.5.4)

Since each of the given vectors is in R
n, it follows that A has n rows and is therefore an

n× k matrix.
The linear combination c1v1+ c2v2+· · ·+ ckvk = 0 can be written in matrix form

as (see Theorem 2.2.9)

Ac = 0, (4.5.5)

where A is given in Equation (4.5.4) and c = [c1 c2 . . . ck]T . Consequently, we can
state the following theorem and corollary:

Theorem 4.5.14 Let v1, v2, . . . , vk be vectors in R
n and A = [v1, v2, . . . , vk]. Then {v1, v2, . . . , vk} is

linearly dependent if and only if the linear system Ac = 0 has a nontrivial solution.

Corollary 4.5.15 Let v1, v2, . . . , vk be vectors in R
n and A = [v1, v2, . . . , vk].

1. If k > n, then {v1, v2, . . . , vk} is linearly dependent.

2. If k = n, then {v1, v2, . . . , vk} is linearly dependent if and only if det(A) = 0.

Proof If k > n, the system (4.5.5) has an infinite number of solutions (see Corol-
lary 2.5.11), hence the vectors are linearly dependent by Theorem 4.5.14.

On the other hand, if k = n, the system (4.5.5) is n× n, and hence, from Corollary
3.2.5, it has an infinite number of solutions if and only if det(A) = 0.

Example 4.5.16 Determine whether the given vectors are linearly dependent or linearly independent in

R
4.

1. v1 = (1, 3,−1, 0), v2 = (2, 9,−1, 3), v3 = (4, 5, 6, 11), v4 = (1,−1, 2, 5),
v5 = (3,−2, 6, 7).

2. v1 = (1, 4, 1, 7), v2 = (3,−5, 2, 3), v3 = (2,−1, 6, 9), v4 = (−2, 3, 1, 6).
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Solution:

1. Since we have five vectors in R
4, Corollary 4.5.15 implies that {v1, v2, v3, v4, v5}

is necessarily linearly dependent.

2. In this case, we have four vectors in R
4, and therefore, we can use the determinant:

det(A) = det[v1, v2, v3, v4] =
1 3 2 −2
4 −5 −1 3
1 2 6 1
7 3 9 6

= −462.

Since the determinant is nonzero, it follows from Corollary 4.5.15 that the given
set of vectors is linearly independent. �

Linear Independence of Functions
We now consider the general problem of determining whether or not a given set of
functions is linearly independent or linearly dependent. We begin by specializing the
general Definition 4.5.4 to the case of a set of functions defined on an interval I .

DEFINITION 4.5.17

The set of functions {f1, f2, . . . , fk} is linearly independent on an interval I if and
only if the only values of the scalars c1, c2, . . . , ck such that

c1f1(x)+ c2f2(x)+ · · · + ckfk(x) = 0, for all x ∈ I , (4.5.6)

are c1 = c2 = · · · = ck = 0.

The main point to notice is that the condition (4.5.6) must hold for all x in I .
A key tool in deciding whether or not a collection of functions is linearly independent

on an interval I is the Wronskian. As we will see in Chapter 6, we can draw particularly
sharp conclusions from the Wronskian about the linear dependence or independence of
a family of solutions to a linear homogeneous differential equation.

DEFINITION 4.5.18

Let f1, f2, . . . , fk be functions in Ck−1(I ). The Wronskian of these functions is
the order k determinant defined by

W [f1, f2, . . . , fk](x) =
f1(x) f2(x) . . . fk(x)

f ′1(x) f ′2(x) . . . f ′k(x)
...

...
...

f
(k−1)
1 (x) f

(k−1)
2 (x) . . . f

(k−1)
k (x)

.

Remark Notice that the Wronskian is a function defined on I . Also note that this
function depends on the order of the functions in the Wronskian. For example, using
properties of determinants,

W [f2, f1, . . . , fk](x) = −W [f1, f2, . . . , fk](x).
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Example 4.5.19 If f1(x) = sin x and f2(x) = cos x on (−∞,∞), then

W [f1, f2](x) = sin x cos x
cos x − sin x

= (sin x)(− sin x)− (cos x)(cos x)

= −(sin2 x + cos2 x) = −1. �

Example 4.5.20 If f1(x) = x, f2(x) = x2, and f3(x) = x3 on (−∞,∞), then

W [f1, f2, f3](x) =
x x2 x3

1 2x 3x2

0 2 6x
= x(12x2 − 6x2)− (6x3 − 2x3) = 2x3. �

We can now state and prove the main result about the Wronskian.

Theorem 4.5.21 Let f1, f2, . . . , fk be functions in Ck−1(I ). If W [f1, f2, . . . , fk] is nonzero at some
point x0 in I , then {f1, f2, . . . , fk} is linearly independent on I .

Proof To apply Definition 4.5.17, assume that

c1f1(x)+ c2f2(x)+ · · · + ckfk(x) = 0,

for all x in I . Then, differentiating k − 1 times yields the linear system

c1f1(x) + c2f2(x) + · · · + ckfk(x) = 0,
c1f
′
1(x) + c2f

′
2(x) + · · · + ckf

′
k(x) = 0,

...

c1f
(k−1)
1 (x) + c2f

(k−1)
2 (x) + · · · + ckf

(k−1)
k (x) = 0,

where the unknowns in the system are c1, c2, . . . , ck . We wish to show that c1 = c2 =
· · · = ck = 0. The determinant of the matrix of coefficients of this system is just
W [f1, f2, . . . , fk](x). Consequently, if W [f1, f2, . . . , fk](x0) �= 0 for some x0 in I ,
then the determinant of the matrix of coefficients of the system is nonzero at that point, and
therefore the only solution to the system is the trivial solution c1 = c2 = · · · = ck = 0.
That is, the given set of functions is linearly independent on I .

Remarks

1. Notice that it is only necessary forW [f1, f2, . . . , fk](x) to be nonzero at one point
in I for {f1, f2, . . . , fk} to be linearly independent on I .

2. Theorem 4.5.21 does not say that if W [f1, f2, . . . , fk](x) = 0 for every x in I ,
then {f1, f2, . . . , fk} is linearly dependent on I . As we will see in the next example
below, the Wronskian of a linearly independent set of functions on an interval I can
be identically zero on I . Instead, the logical equivalent of the preceding theorem
is: If {f1, f2, . . . , fk} is linearly dependent on I , then W [f1, f2, . . . , fk](x) = 0
at every point of I .



“main”
2007/2/16
page 277

�

�

�

�

�

�

�

�

4.5 Linear Dependence and Linear Independence 277

If W [f1, f2, . . . , fk](x) = 0 for all x in I , Theorem 4.5.21 gives no information
as to the linear dependence or independence of {f1, f2, . . . , fk} on I .

Example 4.5.22 Determine whether the following functions are linearly dependent or linearly indepen-
dent on I = (−∞,∞).

(a) f1(x) = ex , f2(x) = x2ex .

(b) f1(x) = x, f2(x) = x + x2, f3(x) = 2x − x2.

(c) f1(x) = x2, f2(x) =
{

2x2, if x ≥ 0,
−x2, if x < 0.

Solution:

(a)

W [f1, f2](x) = ex x2ex

ex ex(x2 + 2x)
= e2x(x2 + 2x)− x2e2x = 2xe2x.

SinceW [f1, f2](x) �= 0 (except at x = 0), the functions are linearly independent
on (−∞,∞).

(b)

W [f1, f2, f3](x) =
x x + x2 2x − x2

1 1+ 2x 2− 2x
0 2 −2

= x [(−2)(1+ 2x)− 2(2− 2x)]

−
[
(−2)(x + x2)− 2(2x − x2)

]
= 0.

Thus, no conclusion can be drawn from Theorem 4.5.21. However, a closer in-
spection of the functions reveals, for example, that

f2 = 3f1 − f3.

Consequently, the functions are linearly dependent on (−∞,∞).
(c) If x ≥ 0, then

W [f1, f2](x) = x2 2x2

2x 4x
= 0,

whereas if x < 0, then

W [f1, f2](x) = x2 −x2

2x −2x
= 0.

Thus, W [f1, f2](x) = 0 for all x in (−∞,∞), so no conclusion can be drawn
from Theorem 4.5.21. Again we take a closer look at the given functions. They
are sketched in Figure 4.5.3. In this case, we see that on the interval (−∞, 0), the
functions are linearly dependent, since

f1 + f2 = 0.
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y

x

y � f1(x) � x2

y � f1(x) � x2

y � f2(x) � 2x2

y � f2(x) � �x2

f2(x) � 2f1(x) on [0, 	)

f2(x) � �f1(x) on (�	, 0)

Figure 4.5.3: Two functions that are linearly independent on (−∞,∞), but whose
Wronskian is identically zero on that interval.

They are also linearly dependent on [0,∞), since on this interval we have

2f1 − f2 = 0.

The key point is to realize that there is no set of nonzero constants c1, c2 for which

c1f1 + c2f2 = 0

holds for all x in (−∞,∞). Hence, the given functions are linearly independent
on (−∞,∞). This illustrates our second remark following Theorem 4.5.21, and
it emphasizes the importance of the role played by the interval I when discussing
linear dependence and linear independence of functions. A collection of functions
may be linearly independent on an interval I1, but linearly dependent on another
interval I2. �

It might appear at this stage that the usefulness of the Wronskian is questionable,
since if W [f1, f2, . . . , fk] vanishes on an interval I , then no conclusion can be drawn
as to the linear dependence or linear independence of the functions f1, f2, . . . , fk on
I . However, the real power of the Wronskian is in its application to solutions of linear
differential equations of the form

y(n) + a1(x)y
(n−1) + · · · + an−1(x)y

′ + an(x)y = 0. (4.5.7)

In Chapter 6, we will establish that if we have n functions that are solutions of an equation
of the form (4.5.7) on an interval I , then if the Wronskian of these functions is identically
zero on I , the functions are indeed linearly dependent on I . Thus, the Wronskian does
completely characterize the linear dependence or linear independence of solutions of
such equations. This is a fundamental result in the theory of linear differential equations.

Exercises for 4.5

Key Terms
Linearly dependent set, Linear dependency, Linearly inde-
pendent set, Minimal spanning set, Wronskian of a set of
functions.

Skills

• Be able to determine whether a given finite set of vec-
tors is linearly dependent or linearly independent. For

sets of one or two vectors, you should be able to do
this at a glance. If the set is linearly dependent, be able
to determine a linear dependency relationship among
the vectors.

• Be able to take a linearly dependent set of vectors and
remove vectors until it becomes a linearly independent
set of vectors with the same span as the original set.
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• Be able to produce a linearly independent set of vec-
tors that spans a given subspace of a vector space V .

• Be able to conclude immediately that a set of k vectors
in R

n is linearly dependent if k > n, and know what
can be said in the case where k = n as well.

• Know what information the Wronskian does (and does
not) give about the linear dependence or linear inde-
pendence of a set of functions on an interval I .

True-False Review
For Questions 1–9, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. Every vector space V possesses a unique minimal
spanning set.

2. The set of column vectors of a 5×7 matrixAmust be
linearly dependent.

3. The set of column vectors of a 7×5 matrixAmust be
linearly independent.

4. Any nonempty subset of a linearly independent set of
vectors is linearly independent.

5. If the Wronskian of a set of functions is nonzero at
some point x0 in an interval I , then the set of func-
tions is linearly independent.

6. If it is possible to express one of the vectors in a set
S as a linear combination of the others, then S is a
linearly dependent set.

7. If a set of vectors S in a vector space V contains a
linearly dependent subset, then S is itself a linearly
dependent set.

8. A set of three vectors in a vector spaceV is linearly de-
pendent if and only if all three vectors are proportional
to one another.

9. If the Wronskian of a set of functions is identically
zero at every point of an interval I , then the set of
functions is linearly dependent.

Problems
For Problems 1–9, determine whether the given set of vectors
is linearly independent or linearly dependent in R

n. In the
case of linear dependence, find a dependency relationship.

1. {(1,−1), (1, 1)}.
2. {(2,−1), (3, 2), (0, 1)}.
3. {(1,−1, 0), (0, 1,−1), (1, 1, 1)}.
4. {(1, 2, 3), (1,−1, 2), (1,−4, 1)}.
5. {(−2, 4,−6), (3,−6, 9)}.
6. {(1,−1, 2), (2, 1, 0)}.
7. {(−1, 1, 2), (0, 2,−1), (3, 1, 2), (−1,−1, 1)}.
8. {(1,−1, 2, 3), (2,−1, 1,−1), (−1, 1, 1, 1)}.
9. {(2,−1, 0, 1), (1, 0,−1, 2), (0, 3, 1, 2),
(−1, 1, 2, 1)}.

10. Let v1 = (1, 2, 3), v2 = (4, 5, 6), v3 = (7, 8, 9). De-
termine whether {v1, v2, v3} is linearly independent in
R

3. Describe
span{v1, v2, v3}

geometrically.

11. Consider the vectors v1 = (2,−1, 5),
v2 = (1, 3,−4), v3 = (−3,−9, 12) in R

3.

(a) Show that {v1, v2, v3} is linearly dependent.

(b) Is v1 ∈ span{v2, v3}? Draw a picture illustrating
your answer.

12. Determine all values of the constant k for which the
vectors (1, 1, k), (0, 2, k), and (1, k, 6) are linearly de-
pendent in R

3.

For Problems 13–14, determine all values of the constant k
for which the given set of vectors is linearly independent in
R

4.

13. {(1, 0, 1, k), (−1, 0, k, 1), (2, 0, 1, 3)}.
14. {(1, 1, 0,−1), (1, k, 1, 1), (2, 1, k, 1), (−1, 1, 1, k)}.

For Problems 15–17, determine whether the given set of vec-
tors is linearly independent in M2(R).

15. A1 =
[

1 1
0 1

]
, A2 =

[
2 −1
0 1

]
, A3 =

[
3 6
0 4

]
.

16. A1 =
[

2 −1
3 4

]
, A2 =

[−1 2
1 3

]
.
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17. A1 =
[

1 0
1 2

]
, A2 =

[−1 1
2 1

]
, A3 =

[
2 1
5 7

]
.

For Problems 18–19, determine whether the given set of vec-
tors is linearly independent in P1.

18. p1(x) = 1− x, p2(x) = 1+ x.

19. p1(x) = 2+ 3x, p2(x) = 4+ 6x.

20. Show that the vectors

p1(x) = a + bx and p2(x) = c + dx
are linearly independent in P1 if and only if the con-
stants a, b, c, d satisfy ad − bc �= 0.

21. If f1(x) = cos 2x, f2(x) = sin2 x, f3(x) = cos2 x,
determine whether {f1, f2, f3} is linearly dependent
or linearly independent in C∞(−∞,∞).

For Problems 22–28, determine a linearly independent set of
vectors that spans the same subspace of V as that spanned
by the original set of vectors.

22. V = R
3, {(1, 2, 3), (−3, 4, 5), (1,− 4

3 ,− 5
3 )}.

23. V = R
3, {(3, 1, 5), (0, 0, 0), (1, 2,−1), (−1, 2, 3)}.

24. V = R
3, {(1, 1, 1), (1,−1, 1), (1,−3, 1), (3, 1, 2)}.

25. V = R
4,

{(1, 1,−1, 1), (2,−1, 3, 1), (1, 1, 2, 1), (2,−1, 2, 1)}.
26. V = M2(R),{[

1 2
3 4

]
,

[−1 2
5 7

]
,

[
3 2
1 1

]}
.

27. V = P1, {2− 5x, 3+ 7x, 4− x}.
28. V = P2, {2+ x2, 4− 2x + 3x2, 1+ x}.

For Problems 29–33, use the Wronskian to show that the
given functions are linearly independent on the given inter-
val I .

29. f1(x) = 1, f2(x) = x, f3(x) = x2, I = (−∞,∞).
30. f1(x) = sin x, f2(x) = cos x, f3(x) = tan x,

I = (−π/2, π/2).
31. f1(x) = 1, f2(x) = 3x, f3(x) = x2 − 1, I =

(−∞,∞).
32. f1(x) = e2x, f2(x) = e3x, f3(x) = e−x, I =

(−∞,∞).

33.

f1(x) =
{
x2, if x ≥ 0,

3x3, if x < 0,

f2(x) = 7x2, I = (−∞,∞).
For Problems 34–36, show that the Wronskian of the
given functions is identically zero on (−∞,∞). Determine
whether the functions are linearly independent or linearly
dependent on that interval.

34. f1(x) = 1, f2(x) = x, f3(x) = 2x − 1.

35. f1(x) = ex, f2(x) = e−x, f3(x) = cosh x.

36. f1(x) = 2x3,

f2(x) =
{

5x3, ifx ≥ 0,

−3x3, if x < 0.

37. Consider the functions f1(x) = x,

f2(x) =
{

x, if x ≥ 0,

−x, if x < 0.

(a) Show that f2 is not in C1(−∞,∞).
(b) Show that {f1, f2} is linearly dependent on the in-

tervals (−∞, 0) and [0,∞), while it is linearly in-
dependent on the interval (−∞,∞). Justify your
results by making a sketch showing both of the
functions.

38. Determine whether the functions f1(x) = x,

f2(x) =
{
x, if x �= 0,

1, if x = 0.

are linearly dependent or linearly independent on I =
(−∞,∞).

39. Show that the functions

f1(x) =
{

x − 1, if x ≥ 1,

2(x − 1), if x < 1,

f2(x) = 2x, f3(x) = 3 form a linearly independent
set on (−∞,∞). Determine all intervals on which
{f1, f2, f3} is linearly dependent.
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40. (a) Show that {1, x, x2, x3} is linearly independent
on every interval.

(b) If fk(x) = xk for k = 0, 1, . . . , n, show that
{f0, f1, . . . , fn} is linearly independent on every
interval for all fixed n.

41. (a) Show that the functions

f1(x) = er1x, f2(x) = er2x, f3(x) = er3x
have Wronskian

W [f1, f2, f3](x) = e(r1+r2+r3)x
1 1 1
r1 r2 r3
r2

1 r
2
2 r

2
3

= e(r1+r2+r3)x(r3 − r1)(r3 − r2)(r2 − r1),
and hence determine the conditions on r1, r2, r3
such that {f1, f2, f3} is linearly independent on
every interval.

(b) More generally, show that the set of functions

{er1x, er2x, . . . , ernx}
is linearly independent on every interval if and
only if all of the ri are distinct. [Hint: Show that
the Wronskian of the given functions is a multiple
of the n× n Vandermonde determinant, and then
use Problem 21 in Section 3.3.]

42. Let {v1, v2} be a linearly independent set in a vector
space V , and let v = αv1 + v2,w = v1 + αv2, where
α is a constant. Use Definition 4.5.4 to determine all
values of α for which {v,w} is linearly independent.

43. If v1 and v2 are vectors in a vector space V , and
u1,u2,u3 are each linear combinations of them, prove
that {u1,u2,u3} is linearly dependent.

44. Let v1, v2, . . . , vm be a set of linearly independent vec-
tors in a vector space V and suppose that the vectors
u1,u2, . . . ,un are each linear combinations of them.
It follows that we can write

uk =
m∑
i=1

aikvi , k = 1, 2, . . . , n,

for appropriate constants aik .

(a) If n > m, prove that {u1,u2, . . . ,un} is linearly
dependent on V .

(b) If n = m, prove that {u1,u2, . . . ,un} is linearly
independent in V if and only if det[aij ] �= 0.

(c) If n < m, prove that {u1,u2, . . . ,un} is linearly
independent in V if and only if rank(A) = n,
where A = [aij ].

(d) Which result from this section do these results
generalize?

45. Prove from the definition of “linearly independent”
that if {v1, v2, . . . , vn} is linearly independent and
if A is an invertible n × n matrix, then the set
{Av1, Av2, . . . , Avn} is linearly independent.

46. Prove that if {v1, v2} is linearly independent and v3
is not in span{v1, v2}, then {v1, v2, v3} is linearly
independent.

47. Generalizing the previous exercise, prove that if
{v1, v2, . . . , vk} is linearly independent and vk+1 is
not in span{v1, v2, . . . , vk}, then {v1, v2, . . . , vk+1} is
linearly independent.

48. Prove Theorem 4.5.2.

49. Prove Proposition 4.5.7.

50. Prove that if {v1, v2, . . . , vk} spans a vector space V ,
then for every vector v in V , {v, v1, v2, . . . , vk} is lin-
early dependent.

51. Prove that if V = Pn and S = {p1, p2, . . . , pk} is a
set of vectors in V each of a different degree, then S is
linearly independent. [Hint: Assume without loss of
generality that the polynomials are ordered in descend-
ing degree: deg(p1) > deg(p2) > · · · > deg(pk).
Assuming that c1p1 + c2p2 + · · · + ckpk = 0, first
show that c1 is zero by examining the highest degree.
Then repeat for lower degrees to show successively
that c2 = 0, c3 = 0, and so on.]

4.6 Bases and Dimension

The results of the previous section show that if a minimal spanning set exists in a
(nontrivial) vector space V , it cannot be linearly dependent. Therefore if we are looking
for minimal spanning sets for V , we should focus our attention on spanning sets that are
linearly independent. One of the results of this section establishes that every spanning
set for V that is linearly independent is indeed a minimal spanning set. Such a set will be


