Lessons 27

Factoring Trinomials, Perfect Square Trinomials, Difference of Squares

TRINOMIALS (leading coefficient not a 1)

Form: $ax^2 + bx + c$ Always write terms in descending order!

Notice: $(3x-5)(2x+3) = 6x^2 + 9x - 10x - 15 = 6x^2 - x - 15$

 $6x^2$ is the product of the first two terms, -15 is the product of the last two terms, -*x* is the sum of the outer and inner terms

There are two methods that can be used to factor trinomials of the form,

 $ax^2 + bx + c$. The first method is a 'trial-and-error' process or 'reversing FOIL'. The second method is called the 'Grouping Method' or Product/Sum Method. I will show both methods and you may choose which method works for you. I recommend the Grouping Method.

Trial-and-Error Method:

- 1. Make your first terms have a product of ax^2 .
- 2. Make your last terms have a product of c.
- 3. Find the sum of the inner and outer terms and check if it equals bx. If not, go back to steps 1 and 2 and try a different combination, until step 3 checks.

OR

Grouping Method (Product/Sum Method)

Follow these steps:

- 1. If the trinomial is in the form $ax^2 + bx + c$, find a pair of numbers whose product is *ac* and whose sum is *b*. Call these numbers *r* and *s*.
- 2. Write the polynomial of the form $ax^2 + rx + sx + c$. Use the 'grouping' method to factor. (This method will be demonstrated in class.)

Factor:

1) $6x^2 - 5x - 25$

2) $9a^2 + 18a + 8$

3) $6x^2 + 5x - 6$

4)
$$8x^2 - 2x - 15$$

5)
$$12x^2 + 23x + 10$$

6) $8x^2 - 18xy + 9y^2$

7) $14x + 12x^2 + 4$

Examine the following polynomials and the factors of those polynomials.

 $x^{2} + 10x + 25 = (x+5)(x+5) \text{ or } (x+5)^{2}$

$$x^{2}-6x+9 = (x-3)(x-3) \text{ or } (x-3)^{2}$$

 $4x^{2} + 4x + 1 = (2x + 1)(2x + 1) = (2x + 1)^{2}$

A Trinomial that when factored equals a binomial squared is called a <u>PERFECT SQUARE TRINOMIAL.</u>

Recognizing a Perfect Square Trinomial:

 $A^{2} + 2AB + B^{2}$ or $A^{2} - 2AB + B^{2}$ represents a perfect square trinomial pattern.

- 1. The first term A^2 is a perfect square.
- 2. The 3^{rd} term B^2 is a perfect square.
- 3. The middle terms is double the product of the square roots of the first and third terms.

OR

If the product/sum method for factoring a trinomial is used and the pair of numbers is the same number, this indicates a perfect square trinomial.

Factor the following, if possible. Identify which are perfect square trinomials.

1)
$$x^2 - 20x + 100$$

2)
$$9x^2 + 6x + 1$$

3)
$$4x^2 - 15x + 9$$

4)
$$a^2 - 22a + 121$$

5)
$$b^2 + b + \frac{1}{4}$$

6)
$$2x^2 - 12xy + 18y^2$$

The following binomial pattern is called the <u>DIFFERENCE OF SQUARES</u>. It factors as two binomials; one a sum and the other a difference.

$$A^2 - B^2 = (A+B)(A-B)$$

Factor the following. Identify any differences of squares.

1)
$$m^2 - 36$$

- 2) $a^2b^2 144$
- 3) $2n^2 32$
- 4) $4x^2 9x$
- 5) $5x^8 125y^4$
- 6) $25y^6 36$
- 7) $98 8a^4b^2$