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Even and odd functions

Definition

A function f(x) is said to be even if f(−x) = f(x).
The function f(x) is said to be odd if f(−x) = −f(x).

Graphically, even functions have symmetry about the y-axis,
whereas odd functions have symmetry around the origin.

Even Odd Neither
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Even and odd functions

Examples:

I Sums of odd powers of x are odd: 5x3 − 3x

I Sums of even powers of x are even: −x6 + 4x4 + x2 − 3

I sinx is odd, and cosx is even

sinx (odd) cosx (even)

I The product of two odd functions is even: x sinx is even

I The product of two even functions is even: x2 cosx is even

I The product of an even function and an odd function is
odd: sinx cosx is odd
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Integrating odd functions over symmetric domains

Let p > 0 be any fixed number. If f(x) is an odd function, then∫ p

−p
f(x) dx = 0.

Intuition: The area beneath the curve on [−p, 0] is the same as
the area under the curve on [0, p], but opposite in sign. So, they
cancel each other out!

A

−A



The Basics Fourier series Examples

Integrating even functions over symmetric domains

Let p > 0 be any fixed number. If f(x) is an even function, then∫ p

−p
f(x) dx = 2

∫ p

0
f(x) dx.

Intuition: The area beneath the curve on [−p, 0] is the same as
the area under the curve on [0, p], but this time with the same
sign. So, you can just find the area under the curve on [0, p] and
double it!

AA
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Periodic functions

Definition

A function f(x) is said to be periodic if there exists a number
T > 0 such that f(x+ T ) = f(x) for every x. The smallest such
T is called the period of f(x).

Intiutively, periodic functions have repetitive behavior.
A periodic function can be defined on a finite interval, then
copied and pasted so that it repeats itself.
Examples

I sinx and cosx are periodic with period 2π

I sin(πx) and cos(πx) are periodic with period 2

I If L is a fixed number, then sin(2πxL ) and cos(2πxL ) have
period L

Sine and cosine are the most “basic” periodic functions!
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Fourier series

Let p > 0 be a fixed number and f(x) be a periodic function
with period 2p, defined on (−p, p). The Fourier series of f(x) is
a way of expanding the function f(x) into an infinite series
involving sines and cosines:

f(x) =
a0
2

+

∞∑
n=1

an cos(
nπx

p
) +

∞∑
n=1

bn sin(
nπx

p
) (2.1)

where a0, an, and bn are called the Fourier coefficients of f(x),
and are given by the formulas

a0 =
1

p

∫ p

−p
f(x) dx, an =

1

p

∫ p

−p
f(x) cos(

nπx

p
) dx, (2.2)

bn =
1

p

∫ p

−p
f(x) sin(

nπx

p
) dx,
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Fourier Series

Remarks:
I To find a Fourier series, it is sufficient to calculate the

integrals that give the coefficients a0, an, and bn and plug
them in to the big series formula, equation (2.1) above.

I Typically, f(x) will be piecewise defined.
I Big advantage that Fourier series have over Taylor series:

the function f(x) can have discontinuities!

Useful identities for Fourier series: if n is an integer, then
I sin(nπ) = 0

e.g. sin(π) = sin(2π) = sin(3π) = sin(20π) = 0

I cos(nπ) = (−1)n =

{
1 n even

−1 n odd

e.g. cos(π) = cos(3π) = cos(5π) = −1,

but cos(0π) = cos(2π) = cos(4π) = 1.
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Fourier coefficients of an even function

If f(x) is an even function, then the formulas for the coefficients
simplify. Specifically, since f(x) is even, f(x) sin(nπxp ) is an odd
function, and thus

bn =
1

p

∫ p

−p

odd︷ ︸︸ ︷
f(x)︸︷︷︸
even

sin(
nπx

p
)︸ ︷︷ ︸

odd

dx = 0

Therefore, for even functions, you can automatically conclude
(no computations necessary!) that the bn coefficients are all 0.
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Fourier coefficients for an odd function

If f(x) is odd, then we get two freebies:

a0 =
1

p

∫ p

−p

odd︷︸︸︷
f(x) dx = 0

an =
1

p

∫ p

−p

odd︷ ︸︸ ︷
f(x)︸︷︷︸
odd

cos(
nπx

p
)︸ ︷︷ ︸

even

dx = 0

Note: In general, your function may be neither even nor odd. In
those cases, you should use the original formulas for computing
Fourier coefficients, given in equation (2.2).
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Disclaimer

The following examples are just meant to give you an idea of
what sorts of computations are involved in finding a Fourier
series. You’re not meant to be able to carry out these
computations yet. So just sit back, relax, and enjoy the ride!
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Example 1

Let f(x) be periodic and defined on one period by the formula

f(x) =

{
−1 −2 < x < 0

1 0 < x < 2

Graph of f(x) (original part in green):

−4 −2 2 4
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Example 1

Since f(x) is an odd function, we conclude that a0 = an = 0 for
each n. A bit of computation reveals

bn =
1

2

∫ 2

−2
f(x) sin(

nπx

2
) dx =

2

nπ
(1− cos(nπ)) =

2

nπ
(1− (−1)n)

Therefore

f(x) =

∞∑
n=1

2

nπ
(1− (−1)n) sin(

nπx

2
)

=
4

π
sin(

πx

2
)︸ ︷︷ ︸

n=1

+
4

3π
sin(

3πx

2
)︸ ︷︷ ︸

n=3

+ · · ·

Notice: The even bn terms are all 0 since 1− (−1)n = 1− 1 = 0
when n is even.
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Example 1

If we plot the first N non-zero terms, we get approximations of
f(x):

N = 1 N = 2 N = 3 N = 4

−2 −1 1 2 −2 −1 1 2 −2 −1 1 2 −2 −1 1 2

N = 10 N = 20 N = 30 N = 40

−2 −1 1 2 −2 −1 1 2 −2 −1 1 2 −2 −1 1 2
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Example 1

−2 −1 1 2

Observations:

I As the number
of terms used increases, the
approximation gets closer and
closer to the original function

I The original function has
a discontinuity at x = 0. The
approximation converges to
0 there, which is the average of
the right- and left-hand limits

as x→ 0.

In general, if f(x) has a discontinuity at x0, then the
Fourier series converges to the average of
lim
x→x+0

f(x) and lim
x→x−0

f(x).
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Example 2

Let f(x) be periodic and defined on one period by the formula

f(x) =

{
0 −π < x < 0

x2 0 < x < π

Graph of f(x) (original part in green):

−2π −π π 2π

π2

The function is neither even nor odd since it has no symmetry.
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Example 2

After some calculations (which are very tedious and involve lots
of IBP),

a0 =
1

3
π2, an =

2(−1)n

n2
, bn =

(−1)n(2− π2n2)− 2

n3π

Thus,

f(x) =
1

6
π2︸︷︷︸
a0
2

+

∞∑
n=1

2(−1)n

n2︸ ︷︷ ︸
an

cos(nx) +
(−1)n(2− n2π2)− 2

n3π︸ ︷︷ ︸
bn

sin(nx)
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Example 2

Plot of Fourier series (first 20 terms):

−2π −π π 2π

π2

2

π2

Notice: At x = π, the series converges to 1
2(π2 + 0) = π2

2 .
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Example 2

By plugging in x = π into the Fourier series for f(x) and using

the fact that the series converges to π2

2 ,

π2

2
=
π2

6
+

∞∑
n=1

(
2(−1)n

n2
cos(nπ) +

(−1)n(2− π2n2)− 2

n3π
sin(nπ)

)
Because sin(nπ) = 0 and (−1)n cos(nπ) = (−1)n(−1)n = 1, one
can derive the following formula (c.f. example from lecture 14)

∞∑
n=1

1

n2
=
π2

6
.
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That’s all for now! Reminders:

I Review Friday

I Next office hours: Thursday, 6:00 – 7:00 pm (Math 609)

I Exam 2: Monday, 6:30 pm in Elliot
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