<u>Factoring Trinomials Using the *ac* method</u> <u>or the PRODUCT-SUM METHOD</u>

Some students have difficulty factoring a trinomial of the form $ax^2 + bx + c$ using 'trial-and-error' or 'guessing'. There is a method that works better and will also identify if the trinomial cannot be factored (is prime). This document explain the method, called either the *ac* method or the product-sum method, and gives several examples.

If the trinomial is of the form $x^2 + bc + c$ (leading coefficient is 1)...

- 1) Find two integers whose product is *c* and whose sum is *b*.
- 2) Let's call the two integers *r* and *s*.
- 3) One factor is (x + r) and the other factor is (x + s).
- **Ex 1:** Factor $x^2 + 16x + 55$ at the right. Find two integers whose product is c = 55. The pairs are listed in the table $\frac{1}{55} - 1 - 55}{5}$

Select the pair that has a sum of b = 16. That pair is 5 and 11. Therefore the factors are... $x^2 + 16x + 55 = (x+5)(x+11)$

Ex 2: Factor $x^2 - 16x + 60$ Find two integers whose product is c = 60. The pairs are listed in the table at the right.

1	60	-1	-60
2	30	-2	-30
3	20	-3	-20
4	15	-4	-15
5	12	-5	-12
6	10	-6	-10

- Select the pair that has a sum of b = -16. That pair is -6 and -10. Therefore the factors are... $x^2 16x + 60 = (x 6)(x 10)$
- **Ex 3:** Factor $a^2 + 7a 18$ Find two integers whose product is c = -18. The pairs are listed in the table at the right.

1	-18	-1	18
2	-9	-2	9
3	-6	-3	6

Select the pair that has a sum of b = 7. That pair is 9 and -2. Therefore the factors are... $a^2 + 7a - 18 = (a+9)(a-2)$

(continued on the next page)

Ex 4: Factor $y^2 - 10y - 39$ table at the right.

1	-39	-1	39
3	-13	-3	13

Select the pair that has a sum of b = -10. That pair is 3 and -13. Therefore the factors are... $y^2 - 10y - 39 = (y - 13)(y + 3)$

If the trinomial is of the form $ax^2 + bx + c$, there is a little extra effort to find the factors using this method. Here are the steps.

- 1) Find two integers whose product is *ac* and whose sum is *b*.
- 2) Let's call the two integers *r* and *s*.
- 3) Rewrite the trinomial as a 4 term polynomial as below.

$$ax^2 + rx + sx + c$$

- 4) Use 'grouping by pairs' to factor. Take the GCF out of the first two terms and out of the second two terms and get a common parentheses. See the steps in the following examples.
- **Ex 5:** Factor $2n^2 + n 10$ Find two integers whose product is ac = (2)(-10) = -20. The pairs are listed in the table at the right.

1	-20	-1	20
2	-10	-2	10
4	-5	-4	5

Select the pair that has a sum of b = 1. That pair is -4 and 5. Rewrite the trinomial as follows.

$$2n^{2} + n - 10$$

= $2n^{2} - 4n + 5n - 10$ Take out the GCF from each pair.
= $2n(n-2) + 5(n-2)$
= $(n-2)(2n+5)$

Ex 6: Factor $6x^2 - 17x + 12$ Find two integers whose product is ac = (6)(12) = 72. The pairs are listed in the table at the right.

1	72	-1	-72
2	36	-2	-36
3	24	-3	-24
4	18	-4	-18
6	12	-6	-18
8	9	-8	-9

Select the pair that has a sum of b = -17. That pair is -8 and -9. Rewrite the trinomial as follows.

$$6x^{2} - 17x + 12$$

= $6x^{2} - 8x - 9x + 12$
= $2x(3x - 4) - 3(3x - 4)$
= $(3x - 4)(2x - 3)$

Ex 7: Factor $4a^2 + 27a - 40$ Find two integers whose product is ac = (4)(-40) = -160. The pairs are listed in the table at the right.

1	-160	-1	160
2	-80	-2	80
4	-40	-4	40
5	-32	-5	32
8	-20	-8	20
10	-16	-10	26

Select the pair that has a sum of b = 27. That pair is -5 and 32. Rewrite the trinomial as follows.

$$4a^{2} + 27a - 40$$

= $4a^{2} - 5a + 32a - 40$
= $a(4a - 5) + 8(4a - 5)$
= $(4a - 5)(a + 8)$

Ex 8: Factor $16y^2 + 30y + 9$ Find two integers whose product is ac = (16)(9) = 144. The pairs are listed in the table at the right.

1	144	-1	-144
2	72	-2	-72
3	48	-4	-48
4	36	-4	-36
6	24	-6	-24
9	16	-9	-16
12	12	-12	-12

Select the pair that has a sum of b = 30. That pair is 6 and 24. Rewrite the trinomial as follows.

$$16y^{2} + 30y + 9$$

= $16y^{2} + 6y + 24y + 9$
= $2y(8y + 3) + 3(8y + 3)$
= $(8y + 3)(2y + 3)$

Ex 9: Factor $100c^2 - 140cd + 49d^2$ Find two integers whose product is ac = (100)(49) = 4900. The pairs are listed in the table at the right.

Select the pair that has a sum of b = -140. The pair is -70 and -70. Rewrite the trinomial as follows.

$$100c^{2} - 140cd + 49d^{2}$$

= $100c^{2} - 70cd - 70cd + 49d^{2}$
= $10c(10c - 7d) - 7d(10c - 7d)$
= $(10c - 7d)(10c - 7d)$ or $(10c - 7d)^{2}$

1	4000	1	4000
1	4900	-1	-4900
2	2450	-2	-2450
4	1225	-4	-1225
5	980	-5	-980
7	700	-7	-700
10	490	-10	-490
14	350	-14	-350
20	245	-20	-245
25	196	-25	-196
28	175	-28	-175
35	140	-35	-140
49	100	-49	-100
50	98	-50	-98
70	70	-70	-70