MA 15910, Lessons 1 (a & b) Polynomials

Algebra part of Textbook: Section 5.2, Calculus part of Textbook: Section R.1

<u>Definition</u>: A **term** is a number, a variable, the product or quotient of a number and one or more variables (possibly raised to powers). Below are examples of terms.

Terms: -5,
$$x$$
, $3n$, a^3 , $5x^5y^2$, $\frac{3}{4}mn^4r$ (or $\frac{3mn^4r}{4}$), $\frac{3}{xy^2}$, $\frac{-18z^5}{5x^2y}$

If a term has a number factor, that number is called the **coefficient** of the term.

For the terms listed above, -5 has a coefficient of -5; x has a coefficient of 1, 3n has a coefficient of 3, $\frac{3mn^4r}{4}$ has a coefficient of $\frac{3}{4}$, and $\frac{-18z^5}{5x^2y}$ has a coefficient of $-\frac{18}{5}$.

(Note: The term $\frac{3}{xy^2}$ could be written as $3x^{-1}y^{-2}$; the term -5 could be written as $-5x^0$; and

the term
$$\frac{-18z^5}{5x^2y}$$
 could be written as $-\frac{18}{5}x^{-2}y^{-1}z^5$.)

Definition

Any combination of variables or constants (numbers) joined by the operations of addition, subtraction, multiplication, division (except division by 0), powers, or roots is called an **algebraic expression.**

A specific type of algebraic expression is a **polynomial**.

Definition

A polynomial of 1 variable is a term or a finite sum of terms in which all variables have whole number exponents and no variables appear in denominators.

The **degree of the polynomial** is the greatest exponent in the polynomial and the coefficient of the term with the greatest exponent is called the **leading coefficient**. Any number term (no variables) is called the **constant term or simply a constant**.

A polynomial of 1 variable that is written in order of descending powers of the variable is said to be in **standard form**. A polynomial with only one term is a **monomial**. A polynomial with two *unlike* terms is called a **binomial**. One with three *unlike* terms is a **trinomial**.

(See the table on the text page.)

Polynomial	Standard Form	Degree	Leading Term &Coefficient
$4x - 3x^2 + 2 + x^4$	$x^4 - 3x^2 + 4x + 2$	4	x^4 , 1
$\frac{1}{3}n-3n^3$	$-3n^3 + \frac{1}{3}n$	3	$-3n^3$, -3
20	20	0	20
$4a-12a^5+2a^3-6$	$-12a^5 + 2a^3 + 4a - 6$	5	$-12a^2$, -12

Example A:

$$2x^4 - 3x^5 + 5x - 9 - 5x^3$$

- a) Write the polynomial above in descending order.
- b) What is the degree of the polynomial?
- c) Evaluate, if x = -2.

Evaluate indicates to substitute the given value for the variable and follow the order of operations to derive a number.

Example B: What type of polynomial is each below (monomial, binomial, trinomial, polynomial)?

$$a$$
) $-3x-x^3$

Terms of a polynomial are separated by plus or minus signs.

b)
$$5n^4 - n^3 + 2n - 7$$

c)
$$3y^2 - 2y + 1$$

$$d) \quad 4a^2bc^8xy^3$$

Example C: Combine terms to simplify.

$$a)$$
 $4a^4 + 2a^2 - 3a^3 + 7a^2 + a^3 - 8a^4$

b)
$$6+3c-(4c+1)-(2c-8)$$

<u>Like terms</u> are terms with the same variable factors.

'Like' terms may be 'combined' by adding the coefficients; the variable factors stay the same (do not add exponents).

(lesson 1b or part 2 of lesson 1)

To add two or more polynomials, remove any grouping and combine 'like' terms. To subtract a polynomial, add the opposite (distribute the negative sign). Polynomials may be added or subtracted in a horizontal format or a vertical format. It is important to remember to distribute the negative (minus) to each term of the polynomial that is subtracted.

Example 1: Add or subtract (combine) where possible in each polynomial expression.

a)
$$(3x^2-2x+9)-(5x-2x^2+10)$$

b)
$$(4x+2)-(12x-9)-3x+(5-7x)$$

c)
$$(2a^2-4a+1)-[(3a^2-a+3)-(4a-9a^2+7)]$$

d)
$$[-(b^2-b+7)-(2b^2+3b-5)]+(2b^2-7b-5)$$

$$e$$
) $-5(8a^2-2a+5)-6(-a^2+2a-11)$

f) Add.

$$-13q^2 - 15q + 3$$

 $-5q^2 + 11q - 8$

g)
$$Add$$
.
 $6x^3 + 5x^2 + 7x$
 $-2x^3 - 3x^2 + x$
 $9x^3 - 12x^2 - 2x$

h) Subtract.

$$2m^3 - 7m^2 + 4m$$

$$5m^3 - m^2 + 9$$

i) Subtract.

$$-4y^2 - 7y + 2$$

 $-(-2y^2 + 5y + 3)$

Important Note:

The textbook will not have a minus sign before the polynomial to be subtracted, such as *h* at the left (when aligned vertically).

In MyMathLab, there *may* be a minus sign before the polynomial to be subtracted, such as *i* at the left. (As a reminder to distribute the negative to each term).

Example 2:

The four sides of a quadrilateral can be represented by the expressions (2a+5), (3a-1), (5a-6), and (4a-3). Find a polynomial that represents the <u>perimeter of the quadrilateral</u>. Perimeter is the distance around a figure.

If a = 12, what is that perimeter?

Example 3: Add or subtract the following polynomials. (Hint: Find a LCD.)

a)
$$\left(\frac{2}{3}y - \frac{3}{2}y^2 + \frac{3}{4}\right) + \left(\frac{1}{6}y^2 - \frac{1}{2}y - \frac{2}{3}\right)$$

b)
$$(0.614r^2 - 0.25r + 1.05) - (0.83r^2 - 0.235r + 2.3)$$