NAME		
STUDENT ID		
REC. INSTR.	REC. TIME	
SECTION NUMBER	LECTURER	

INSTRUCTIONS:

- 1. This package contains 13 problems, each worth 8 points.
- 2. Fill in the information requested above and on the mark-sense sheet.
- 3. Mark your answers on the mark-sense sheet and show work in this booklet.
- 4. No books or notes or calculators may be used.

1. The sphere with equation

$$x^{2} + y^{2} + z^{2} - x + y - 6z + \frac{1}{2} = 0$$

has radius

- A. 2
- B. 3
- C. 4
- D. 5
- E. 6

- 2. The angle between the vectors $-4\mathbf{i} 5\mathbf{j} + 7\mathbf{k}$ and $\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ is
 - A. 0
 - B. $\pi/6$
 - C. $\pi/4$
 - D. $\pi/3$
 - E. $\pi/2$

3. $(\mathbf{i} + \mathbf{j} - 2\mathbf{k}) \times (2\mathbf{i} - 3\mathbf{j} + \mathbf{k}) =$

- A. $5\mathbf{i} + 5\mathbf{j} + 5\mathbf{k}$
- B. 3i + 3j + 3k
- C. $\mathbf{i} + \mathbf{j} + \mathbf{k}$
- $D. -3\mathbf{i} 3\mathbf{j} 3\mathbf{k}$
- $E. -5\mathbf{i} 5\mathbf{j} 5\mathbf{k}$

- 4. A person pulls a sled 100 ft. along horizontal snow covered ground with a rope that makes an angle of $\pi/3$ with the horizontal. The tension in the rope is 10 pounds. Find the work done.
 - A. 1000 foot-pounds
 - B. $500\sqrt{3}$ foot-pounds
 - C. $500\sqrt{2}$ foot-pounds
 - D. 500 foot-pounds
 - E. None of the above

- 5. Let $\mathbf{a} = \mathbf{i} + \mathbf{j}$, $\mathbf{b} = \mathbf{j} + \mathbf{k}$. The x coordinate of the unit vector in the direction $\mathbf{a} \times \mathbf{b}$ is
 - A. 0
 - B. $-1/\sqrt{3}$
 - C. $1/\sqrt{3}$
 - D. $-1/\sqrt{5}$
 - E. $1/\sqrt{5}$

6. $\lim_{x \to 0} \frac{x \sin x}{e^x - 1 - x} =$

- A. 1
- B. 2
- C. \sqrt{e}
- $\mathrm{D.}\ e$
- E. ∞

$$7. \lim_{x \to 0^+} x^{\sqrt{x}} =$$

- A. 1
- B. 2
- C. \sqrt{e}
- D. 0
- E. ∞

8.
$$\int t \cos \frac{t}{2} dt =$$

A.
$$t^2 \sin \frac{t}{2} + C$$

B.
$$\frac{t^2}{2}\sin\frac{t^2}{4} + C$$

$$C. \frac{t^2}{2}\cos\frac{t}{2} - t\sin\frac{t}{2} + C$$

$$D. 2t\sin\frac{t}{2} + 4\cos\frac{t}{2} + C$$

$$E. 2t\sin\frac{t}{2} - t^2\cos\frac{t}{2} + C$$

9.
$$\int_0^4 (x-1)e^{x/3}dx =$$

A.
$$2e^{4/3} - 1$$

C.
$$3 - 9e^{4/3}$$

E.
$$3e^{4/3} + 1$$

10.
$$\int_0^{\pi/2} \cos^3 2u \sin^2 2u \, du =$$

D.
$$2/5$$

E.
$$-2/5$$

11. In computing $\int x\sqrt{-3-4x-x^2}\,dx$, which substitution should be used?

A.
$$x = \sqrt{y}$$

$$B. \ x+2=\sqrt{y}$$

C.
$$3 - 4x - x^2 = \sin^2 y$$

$$D. \ x + 2 = \tan y$$

$$E. x+2 = \sin y$$

12. The form of the partial fraction decomposition of $\frac{x+1}{x^2+2x^3}$ will be

A.
$$\frac{A}{x} + \frac{B}{x^2} + \frac{C}{2x+1}$$

B.
$$\frac{A}{x^2} + \frac{Bx + C}{2x + 1}$$

C.
$$\frac{A}{x^2} + \frac{B}{2x+1}$$

D.
$$\frac{Ax+B}{x^2+2x^3} + \frac{C}{2x+1}$$

E.
$$\frac{A}{x} + \frac{B}{2x^2 + x} + C$$

13.
$$\int_{-3}^{3} \frac{6 \, dx}{x^2 + 9} =$$

A. 0

B. $\pi/2$

C. π

 $D.~~12\ln18$

E. $6 \ln 9$