MA 162 Final Exam Spring 1999

NAME	
STUDENT ID	
REC. INSTR.	REC. TIME

INSTRUCTIONS:

- 1. Supply the information requested above, and on the mark–sense answer sheet.
- 2. Mark the letter of your response for each question on the mark—sense answer sheet; show your work in this booklet.
- 3. There are 25 problems; each worth 8 points.
- 4. No books, notes, or calculators, please. You may use the formulas supplied below though.
- 5. Have a good summer!

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, |x| < \infty$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} x^{2n+1}, |x| < \infty$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} x^{2n}, |x| < \infty$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{n}}{n}, |x| < 1$$

$$\sin^{2} x = \frac{1 - \cos(2x)}{2}$$

$$\sin(2x) = 2 \sin x \cos x$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} x^{2n+1}, |x| < \infty$$

$$(1+x)^{s} = \sum_{n=0}^{\infty} \binom{s}{n} x^{n}, |x| < 1$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n}, |x| < 1$$

$$\cos^{2} x = \frac{1 + \cos(2x)}{2}$$

$$1 + \tan^{2} x = \sec^{2} x$$

The angle of rotation θ , $0 < \theta < \pi/2$, that eliminates the xy term from the second degree equation $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ satisfies the equation $\tan 2\theta = \frac{B}{A - C}$, provided $A \neq C$. If A = C, then $\theta = \pi/4$.

 $x = (\cos \theta)X - (\sin \theta)Y$ and $y = (\sin \theta)X + (\cos \theta)Y$, where the XY coordinate system is obtained by rotation the x and y axes through the angle θ about the origin.

Arc length
$$=\int_{\alpha}^{\beta}\sqrt{r^2+\left(\frac{dr}{d\theta}\right)^2}d\theta.$$

1. If $\mathbf{a} = 3\mathbf{i} + \mathbf{j}$, $\mathbf{b} = \mathbf{i} + \mathbf{j} + 2\mathbf{k}$, $\mathbf{c} = -3\mathbf{i} + \mathbf{j} + \mathbf{k}$ then

- A. \mathbf{a}, \mathbf{b} and \mathbf{b}, \mathbf{c} are perpendicular
- B. \mathbf{a}, \mathbf{c} and \mathbf{b}, \mathbf{c} are perpendicular
- C. \mathbf{a}, \mathbf{c} are not perpendicular but \mathbf{b}, \mathbf{c} are
- D. \mathbf{a}, \mathbf{c} are perpendicular but \mathbf{a}, \mathbf{b} are not
- E. None of the above

- 2. The area of the triangle with vertices at $P=(1,-1,2),\ Q=(2,0,1),$ and R=(1,2,-3) is
 - A. 3
 - B. $\sqrt{19/2}$
 - C. $\sqrt{10}$
 - D. $\sqrt{21/1}$
 - E. $\sqrt{11}$

$$3. \lim_{x \to \infty} \left(1 + \frac{e}{x} \right)^{x/2} =$$

B.
$$\sqrt{e}$$

C.
$$\sqrt{e^e}$$

D.
$$e/2$$

E.
$$\infty$$

4.
$$\lim_{x \to 0} \frac{1 - \cos \pi x}{1 - \cos x} =$$

C.
$$\pi$$

D.
$$\pi^2$$

E.
$$\infty$$

$$5. \int_{1}^{2} x \ln x dx =$$

- A. $\ln 2 + 1$
- B. $\ln 2 1$
- $C. \quad \frac{1}{2}(\ln 2)^2$
- D. $4 \ln 2 + \frac{3}{2}$
- E. $2 \ln 2 \frac{3}{4}$

6. The integral $\int \frac{1-x}{x^2(x+1)} dx$ will be of which of the following forms?

A.
$$\frac{a}{x} + b \ln |x| + c \ln |x+1| + d$$

B.
$$a \ln |x| + b(\ln |x|)^2 + c \ln |x+1| + d$$

C.
$$a \ln |x^2| + b \ln |x+1| + c$$

D.
$$a \ln |x^2(x+1)| + b$$

E.
$$\frac{a}{x} + \frac{b}{x+1} + \frac{c}{(x+1)^2} + d$$

- 7. A suitable trigonometric substitution will transform the integral $\int \frac{dx}{(1+x^2)^{3/2}}$ into
 - A. $\int \cos \theta d\theta$
 - B. $\int \cos^2 \theta d\theta$
 - C. $\int \sec^2 \theta d\theta$
 - D. $\int \frac{d\theta}{\sec^3 \theta}$
 - E. $\int (1+\theta^2)d\theta$

8. The improper integral $\int_{0}^{1} \frac{dx}{x^{a}}$ converges when

- A. $1 \le a$
- B. a < 1
- C. $0 < a \le 1$
- D. 1 < a
- E. 0 < a

- 9. The region under the curve $y = \frac{2}{\sqrt{1+x^2}}$, $0 \le x \le 1$, is rotated around the x axis. The volume of the solid of revolution is
 - A. $1/\pi^2$
 - B. $1/\pi$
 - C. 1
 - D. π
 - E. π^2

- 10. If $f'(x) = \sqrt{x^2 1}$ then the length of the curve $y = f(x), \ 2 \le x \le 3$ is
 - A. 5/2
 - B. 3
 - C. 7/2
 - D. 4
 - E. 9/2

11. $\lim_{n \to \infty} \sqrt{n^2 + 2n} - \sqrt{n^2 - 2n} =$

- A. 0
- B. 1
- C. 2
- D. 4
- E. ∞

- 12. Which of the following statements is true? The series $\sum_{n=1}^{\infty} \frac{1}{n+2^n}$ can be seen to
 - A. converge by the comparison test with $\sum_{n=1}^{\infty} \frac{1}{n}$
 - B. diverge by the comparison test with $\sum_{n=1}^{\infty} \frac{1}{n}$
 - C. converge by the comparison test with $\sum_{n=1}^{\infty} \frac{1}{2^n}$
 - D. diverge by the comparison test with $\sum_{n=1}^{\infty} \frac{1}{2^n}$
 - E. None of the above.

13. The generalized root test shows that the series $\sum_{n=1}^{\infty} \frac{(-n)^5}{5^n}$

- A. converges absolutely
- B. converges conditionally
- C. diverges
- D. test is inconclusive
- E. none of the above

- 14. The series $\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{2k-1}}$ is
- A. convergent and absolutely convergent
- B. convergent but not absolutely convergent
- C. absolutely convergent but not convergent
- D. neither convergent nor absolutely convergent
- E. None of the above

- 15. The radius of convergence of the series $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$ is
- A. 0
- B. $\frac{1}{2}$
- C. 1
- D. 2
- E. ∞

- 16. The interval of convergence of the series $\sum_{n=1}^{\infty} \frac{x^{2n}}{n}$ is
- A. [0, 0]
- B. [0,1)
- C. (-1,1)
- D. (-1,1]
- E. $(-\infty, \infty)$

- 17. Given that the Taylor series of $\ln(1+x)$ about 0 is $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}$, the Taylor series of $\ln(1-2x)$ is
 - $A. \quad -\sum_{n=1}^{\infty} \frac{2^n x^n}{n}$
 - B. $-2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}$
 - $C. \quad \sum_{n=1}^{\infty} \frac{x^{2n}}{n}$
 - D. $2\sum_{n=1}^{\infty} \frac{x^n}{n}$
 - E. none of the above

- 18. In the Taylor series of $\tan x$ about $\pi/4$ the first 3 terms are
- A. $1 + \left(x \frac{\pi}{4}\right) + \frac{1}{2}\left(x \frac{\pi}{2}\right)^2$
- B. $1+2\left(x-\frac{\pi}{4}\right)+2\left(x-\frac{\pi}{4}\right)^2$
- C. $x \frac{x^3}{6} + \frac{x^5}{120}$
- D. $\frac{\pi}{4} + \frac{1}{\cos^2 x} x + \frac{\sin x}{\cos^3 x} x^2$
- E. None of the above.

19. The Taylor series of $\frac{1}{\sqrt{1-x^4}}$ about 0 is

- A. $1 \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$
- B. $x + \frac{4x^5}{5} \frac{4x^9}{25} + \dots$
- C. $x + x^5 + x^9 + \dots$
- D. $1 + \frac{x^4}{4} + \frac{5x^8}{18} + \dots$
- E. $1 + \frac{x^4}{2} + \frac{3x^8}{8} + \dots$

20. The curve described parametrically by the equation $x = \cos^2 2t$, $y = \sin^2 2t$ looks most like

A.

В.

С.

D.

Ε.

- 21. At moment t an object is at the point $(x,y)=(\cos^3 t,\,\sin^3 t)$. Its (tangential) velocity when $t = \pi/4$ is
 - A. 1/2
 - B. $\frac{\sqrt{2}}{2}$

 - C. 1
 D. $\frac{3}{2}$
 - E. $\frac{\sqrt{3}}{2}$

- 22. The point with polar coordinates $r=2,~\theta=3\pi$ has Cartesian coordinates
 - (-2, 0)
 - B. (2,3)
 - C. (1,1)
 - D. $(\sqrt{2}, \sqrt{2})$
 - E. $(\sqrt{3}, 1)$

23. The part of the first quadrant enclosed by the curve $r = \sqrt{\sin 3\theta}$ has area

- A. 1/2
- B. 1/3
- C. π
- D. $\pi/2$
- E. $\pi/3$

24. The curve $2x + y^2 + 6y + 3 = 0$ looks most like

A.

В.

С.

D.

E.

- 25. Which of the following three statements is/are true? The equation $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$
 - I. can describe all parabolas, ellipses, and hyperbolas
 - II. can describe parabolas, ellipses, and hyperbolas only if B=0
 - III. describes a parabola whenever A=0

- A. only I
- B. only II
- C. only III
- D. all three
- E. only I and III