MA 266 Summer 2001 HW 3 Handout Name ______ 1. Find the solution of the initial value problem y' = 2y - 1, y(0) = 1. $\phi(t) = ______$

Find the approximate value of the solution of the initial value problem y' = 2y - 1, y(0) = 1, where t = 0.4 using: the Euler method (eul) with h = 0.1_______ the Euler method (eul) with h = 0.05_______ the Euler method (eul) with h = 0.025_______ the improved Euler method (rk2) with h = 0.1______ the Runge-Kutta method (rk4) with h = 0.1______

2. Find the approximate value of the solution of the initial value problem $y' = \sqrt{t+y}, \ y(1) = 3$, where t = 2 using : the Euler method (eul) with h = 0.025_______ the Euler method (eul) with h = 0.0125_______ the improved Euler method (rk2) with h = 0.1______ the improved Euler method (rk2) with h = 0.05______ the Runge-Kutta method (rk4) with h = 0.2______ the Runge-Kutta method (rk4) with h = 0.1______ 3. Give reasons why the Euler tangent line method with h = 0.1 does not give a good approximation of the value of the solution of the initial value problem where t = 1.

(a) $y' = (y + 1.25)^2$, y(0) = 0, solution $y = \frac{25t}{4(4-5t)}$.

(b)
$$y' = \frac{50t}{64(1-2y)}, \ y(0) = 0,$$

solution $y = \frac{1-\sqrt{1-25t^2/16}}{2}.$

(c)
$$y' = 2(ty)^{1/3}$$
, $y(0) = 0$,
solution $y = t^2$.

(d) $y' = 4e^{-t} - 3(1 - y), \ y(0) = 0,$ solution $y = 1 - e^{-t}$.