SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

You should be able to find the largest interval for which a second order linear initial value problem is guaranteed to have a unique solution.

THEOREM: If p, q and g are continuous in an open interval I and t_0 is in I, then the initial value problem y'' + p(t)y' + q(t)y = g(t), $y(t_0) = y_0$, $y'(t_0) = y'_0$, has a unique solution in all of the interval I.

The Wronskian of two differentiable functions y_1 and y_2 is $W(y_1, y_2)(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{vmatrix} = y_1(t)y'_2(t) - y'_1(t)y_2(t).$

THEOREM: If y_1 and y_2 are two solutions of the differential equation y'' + p(t)y' + q(t)y = 0 in some interval I and there is some point t_0 in I such that $W(y_1, y_2)(t_0) \neq 0$, then the general solution of the differential equation is $y = c_1y_1(t) + c_2y_2(t)$.

THEOREM: If Y is a (particular) solution of the differential equation (*) y'' + p(x)y' + q(x)y = g(x) and y_1 and y_2 are a fundamental set of solutions of the corresponding homogeneous equation y'' + p(x)y' + q(x)y = 0, then the general solution of (*) is $y = c_1y_1 + c_2y_2 + Y$.

SECOND ORDER LINEAR HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS

The differential equation ay'' + by' + cy = 0 has characteristic equation $ar^2 + br + c = 0$.

(i) If the characteristic equation has real and unequal roots r_1 and r_2 , then the differential equation has general solution $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$.

(ii) If the characteristic equation has unequal complex roots $\alpha \pm i\beta$, then the differential equation has general solution $y = e^{\alpha t} (c_1 \cos(\beta t) + c_2 \sin(\beta t))$.

(iii) If the characteristic equation has equal real roots $r_1 = r_2$, then the differential equation has general solution $y = c_1 e^{r_1 t} + c_2 t e^{r_1 t}$.

REDUCTION OF ORDER

If $y_1(t)$ is a solution of the differential equation y'' + p(t)y' + q(t)y = 0, the substitution $y(t) = v(t)y_1(t)$ leads to the differential equation

 $y_1(t)v'' + (2y'_1(t) + p(t)y_1(t))v' = 0$. If v(t) is a solution of the latter differential equation, then $y_2(t) = v(t)y_1(t)$ is a solution of the original differential equation. If v is not a constant, then the equation y'' + p(t)y' + q(t)y = 0 has general solution $y = c_1y_1 + c_2y_2$.

METHOD OF UNDETERMINED COEFFICIENTS

Consider the linear differential operator L[y] = ay'' + by' + cy, where a, b, and c are constants. Note: "L" stands for "linear". It is NOT the Laplace transform symbol \mathcal{L} used later in the course. Knowledge of the character of L[y] for certain functions y allows us to determine the form of particular solutions of some differential equations of the form L[y] = g(t).

The differential equation $ay'' + by' + cy = (a_0t^n + a_1t^{n-1} + \dots + a_n)e^{\alpha t}$ has solution

 $Y = t^s (A_0 t^n + A_1 t^{n-1} + \dots + A_n) e^{\alpha t}$, where s is the number of times α is a root of the characteristic equation $ar^2 + br + c = 0$.

(First, write $Y = (A_0 t^n + A_1 t^{n-1} + \dots + A_n) e^{\alpha t}$, then multiply by a factor of t if the proposed particular solution contains a solution of the homogeneous equation.)

The equations
$$ay'' + by' + cy = (a_0t^n + a_1t^{n-1} + \dots + a_n)e^{\alpha t}\cos(\beta t)$$
 and
 $ay'' + by' + cy = (a_0t^n + a_1t^{n-1} + \dots + a_n)e^{\alpha t}\sin(\beta t)$ have solutions
 $Y = t^s \left((A_0t^n + A_1t^{n-1} + \dots + A_n)e^{\alpha t}\cos(\beta t) + (B_0t^n + B_1t^{n-1} + \dots + B_n)e^{\alpha t}\sin(\beta t) \right),$

where s is the number of times $\alpha + i\beta$ is a root of the characteristic equation $ar^2 + br + c = 0$.

(First, write

$$Y = (A_0 t^n + A_1 t^{n-1} + \dots + A_n) e^{\alpha t} \cos(\beta t) + (B_0 t^n + B_1 t^{n-1} + \dots + B_n) e^{\alpha t} \sin(\beta t),$$

then multiply by a factor of t if the proposed particular solution contains a solution of the homogeneous equation.)

MA 266 SPR 01 REVIEW 4 PRACTICE QUESTIONS

2. Suppose that y_0 is a solution of $t^2y'' + ty' + y = t^2$ and $L[y] = t^2y'' + ty' + y$. Evaluate $L[y_0 + t^2 - 2t + 1]$.

3. Find the largest open interval for which the initial value problem $y'' + \frac{1}{t}y' + \frac{1}{t-2}y = \frac{1}{t-3}$, y(1) = 3, y'(1) = 2, has a solution.

4. (a) Show that $y_1 = t$ and $y_2 = t^{-1}$ are solutions of the differential equation $t^2y'' + ty' - y = 0$.

(b) Evaluate the Wronskian $W(t, t^{-1})(t)$.

(c) Find the solution of the initial value problem $t^2y'' + ty' - y = 0$, y(1) = 2, y'(1) = 4.

In Problems 5–7 find the general solution of the homogeneous differential equations in (a) and use the method of undetermined coefficients to find the form of a particular solution of the nonhomogeneous equations in (b) and (c).

(c) $y'' - 6y' + 9y = e^t + \cos(3t)$

7. (a)
$$y'' - 2y' + 10y = 0$$

(b) $y'' - 2y' + 10y = e^t + \cos(3t)$
(c) $y'' - 2y' + 10y = e^t \cdot \cos(3t)$

8. Find the general solution of the differential equation y'' - y' = 4t.

9. The differential equation $t^2y'' + ty' - y = 0$ has solution $y_1(t) = t$.

(a) Use the method of reduction of order to find a differential equation satisfied by v, where y(t) = tv(t) is a solution of $t^2y'' + ty' - y = 0$.

(b) Solve the differential equation in (a) to find a solution of $t^2y'' + ty' - y = 0$ that is not a constant multiple of y_1 .

(c) Find the general solution of the differential equation $t^2y'' + ty' - y = 0$.

MA 266 SPR 01 REVIEW 4 PRACTICE QUESTION ANSWERS

1. (a)
$$L[e^t] = 0$$
, $L[e^{2t}] = 0$, $L[e^{-t}] = 6e^{-t}$
(b) $L[e^{2t}] = 0$, $L[te^{2t}] = 0$, $L[t^2e^{2t}] = 2e^{2t}$
(c) $L[e^{2t}\cos t] = 0$, $L[e^{2t}\sin t] = 0$, $L[\sin t] = 4\sin t - 4\cos t$
2. $L[y_0 + t^2 - 2t + 1] = 6t^2 - 4t + 1$
3. $0 < t < 2$
4. (b) $W(t, t^{-1})(t) = -2t^{-1}$ (c) $y = 3t - t^{-1}$
5. (a) $y = C_1e^{2t} + C_2e^{3t}$
(b) $y = At^2 + Bt + C$
(c) $y = Ate^{2t} + B\cos(3t) + C\sin(3t)$
6. (a) $y = C_1e^{3t} + C_2te^{3t}$
(b) $y = t^2(At + B)e^{3t}$
(c) $y = Ae^t + B\cos(3t) + C\sin(3t)$
7. (a) $y = (C_1\cos(3t) + C_2\sin(3t))e^t$
(b) $y = Ae^t + B\cos(3t) + C\sin(3t)$
(c) $y = t(A\cos(3t) + B\sin(3t))e^t$
8. $y = C_1 + C_2e^t - 2t^2 - 4t$
9. (a) $t^3v'' + 3t^2v' = 0$
(b) $y = t^{-1}$ or $y = a_1t^{-1} + a_2t$, $a_1 \neq 0$

(c)
$$y = C_1 t + C_2 t^{-1}$$