
Courses and Seminars of Interest to Graduate Students
offered by the

Mathematics Department
Spring, 2006

MA 490C (crosslisted with BIOL 595N): Mathematical models of cardiac electrical activity
Instructor: Prof. Buzzard, office: Math 702, phone: 49–41937, e-mail: buzzard@math.purdue.edu
Time: MA 490C, MWF 10:30; BIOL 595N, MW 10:30, plus one additional hour to be arranged.
Prerequisite: MA 366, Differential Equations (Math section only); BIOL 595N, Two semesters of Calculus, such as MA
223 and 224, or MA 161 and 162 (Biology section only)
Description: This course will be devoted to understanding the basics of electrical activity in the heart at three different
levels: ion channels, single cell, and fibers. We will discuss some of the basic biology involved in the functioning of each of
these levels and discuss possible mathematical models for each. The main mathematical tools will be ordinary differential
equations, although there will be a brief introduction to partial differential equations for the fiber description. We will
consider these models both from a theoretical and a computational point of view. A major component of the class will be a
group project focused on creating and understanding a compuational model of a cardiac system. Students will be required
to use some compuational package such as matlab, and there will be some group projects.
Texts: BIOL 595N and MATH 490C will both use Computational Cell Biology, by C. P. Fall, E. S. Marland, J. M. Wagner,
and J. J. Tyson, editors, 2002.
In addition, MATH 490C will use Non-linear Dynamics and Chaos, by S. H. Strogatz, 1994.

MA 546: Introduction to Functional Analysis
Instructor: Prof. Dadarlat, office: Math 708, phone: 49–41940, e-mail: mdd@math.purdue.edu
Time: MWF 1:30
Prerequisite: MA 544
Description: Banach spaces and Hilbert spaces; weak topologies; Hahn-Banach theorem; principle of uniform boundedness;
open mapping theorem; Krein-Milman theorem and applications (including Stone-Weierstrass theorem). Operators on Hilbert
spaces; spectral theorem for hermitian operators; Compact operators; Peter-Weyl theorem. Depending on the interest of the
students, I plan to discuss additional topics related to group representations, operator algebras and/or PDEs.

The grade will be based on homework (70%) and a take home final exam (30%).
References: Most topics are covered by J. B. Conway’s book, A Course in Functional Analysis, which is recommended.

MA 558: Abstract Algebra II
Instructor: Prof. Ulrich, office: Math 618, phone: 49–41972, e-mail: ulrich@math.purdue.edu
Time: MWF 2:30
Prerequisite: Basic knowledge about commutative rings (such as the material of MA 557).
Description: The topics of the course will be introductory homological algebra and commutative algebra. We will study
properties of commutative rings and their modules, with some emphasis on homological methods. The course should be
particularly useful to students interested in commutative algebra, algebraic geometry, number theory or algebraic topology.
Specific topics are: Derived functors, structure of injective modules, flatness, completion, dimension theory, regular sequences,
Cohen-Macaulay modules.
Text: No particular book is required, but typical texts are:
- J. Rotman, An introduction to homological algebra, Academic Press.
- H. Matsumura, Commutative ring theory, Cambridge.
- W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge.
- D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer.

MA 598B: Spatial Statistics and Stochastic Processes in Geophysics(meets with EAS 591F)
Instructor: Prof. Cushman, office: Math 816, phone: 49–48040, e-mail: jcushman@math.purdue.edu
Time: TTh 12:00-1:15
Description: The first half of the course will focus on best linear estimation methods for sets of spatially distributed data
that arise in geophysical applications (geostatistics, cf. Kitanidis Intro to Geostatistics, Cambridge, 1997). The latter half of
the course will focus on employing geostatistics with the underlying physical/chemical/morphological laws to provide more
robust nonlinear estimators (cf. Cushman, The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles, Kluwer,
1997). An elementary background in probability is a prerequisite.
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MA 598E: Complex Analysis
Instructor: Prof. de Branges, office: Math 800, phone: 49–46057, e-mail: branges@math.purdue.edu
Time: MWF 9:30
Description: An introductory course in complex analysis is offered which includes techniques introduced in the second half
of the twentieth century while retaining a relationship to number theory which existed in the first half of the century. The
course is however not aimed a preparing students for qualifying examinations in complex analysis but presumes a level of
mathematical maturity which these examinations test. A treatment of topology, not only in the plane, but also on Riemann
surfaces, is derived from the use of convexity. A proof of the Hahn–Banach theorem is given using the Zorn lemma. Students
are expected to be acquainted with the algebra of polynomials with rational coefficients and its quotient fields. Analytic
function theory is approached as a theory of square summable power series. The factorization of functions which are analytic
and bounded by one in the unit disk is presented as a determination of invariant subspaces of transformations. Hilbert spaces
are introduced whose elements are functions analytic in the unit disk. Reproducing kernel functions and complementation
theory are used to determine the structure of such spaces. A proof of the maximum principle is given from Rolle’s theorem.
An application of the maximum principle is used to show that a function which is differentiable and bounded in the unit
disk is represented by a square summable power series. Another application is the Poisson representation of a function
which is analytic and has nonnegative real part in the unit disk. The Riemann mapping theorem is obtained by an explicit
construction for convex subregions of the complex plane. An estimation theory for mapping functions is an application of
the Radon transformation, as it is also applied in the proof of the Riemann hypothesis. A proof of the Bieberbach conjecture
is obtained using the Löwner parameterization of mappings.
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MA 598F: Numerical Modeling and Inversion in Porous Media
Instructor: Prof. Santos, office: Math 808, e-mail: santos@math.purdue.edu
Time: TTh 3:00-4:15
Description: Derivation of the static and dynamic behavior of fluid-saturated porous media using phenomenological and
homogenization approaches. Constitutive relations, Darcy’s law, Biot’s equations of motion. Plane wave analysis.

Flow in porous media, Richard’s equation for groundwater flow in variably saturated soils. Contaminant transport.
Review of the Finite Element Method. Description of some finite element spaces in 2D and 3D. Analysis of the interpo-

lation error.
Numerical solution of the equations of motion in fluid-saturated porous media using the finite element method. Global

and domain decomposed finite element algorithms. Parallel implementation. Numerical dispersion analysis. Applications to
wave propagation in partially frozen porous media. Computer implementation.

Numerical solution of Richard’s equation for groundwater flow using finite element methods. Application to simulate
groundwater flow in highly heterogeneous soils. Computer implementation.

Parameter estimation in systems described by partial differential equations using functional optimization techniques.
The Gateaux (directional) derivative. Variational formulation. The adjoint method.

Application of optimization techniques to the estimation of wave speeds, permeabilities and other parameters in layered
media combining the finite element method with Newton-type iterations. Analysis of the convergence of the estimation
procedures. Computer implementation.
References:
1. W. A. Jury, W. R. Gardner and W. H. Gardner, Soil Physics, J. Wyley, New York, 1991.
2. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, 1980.
3. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer, New York, 1994. 4. E. B.
Becker, G. F. Carey and J. T. Oden, Finite Elements, an Introduction, Volume I, Prentice Hall, 1981.
5. G. F. Carey and J. T. Oden, Finite Elements, a Second Course, Prentice Hall, 1983.
6. H. T. Banks and K. Kunish, Estimation Techniques for Distributed Parameter Systems, Birkhauser, Boston, 1989.
7. A. Tarantola, Inverse Problem Theory, Elsevier, New York, 1987.
8. J. Nocedal and S. Wright, Numerical Optimization, Springer, New York, 1999.
9. E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer, New York, 1980.
10. J. E. Santos Introduction to the Theory of Poroelasticity, Technical Report #321, October 1998, Center for Applied
Mathematics, Purdue University.
11.E. M. Fernández Berdaguer, J. E. Santos and D. Sheen, An iterative procedure for estimation of variable coefficients in a
hyperbolic system, Applied Mathematics and Computation, 76 (1996) 210–250.
12. L. Guarracino and J. E. Santos Stochastic modeling of variably saturated flow in fractal porous media, Mathematical
Geology, 36 (2), 2004, 239–260.
13. J. E. Santos, C. L. Ravazzoli and J. M. Carcione, A model for wave propagation in a composite solid matrix saturated by
a single-phase fluid, Journal of the Acoustical Society of America, 115 (6), 2004, 2749-2760.
14. J. E. Santos, C. L. Ravazzoli and J. Geiser, On the static and dynamic behavior of fluid saturated composite porous
solids; a homogenization approach, Technical Report Series ISC-04-11-MATH, Institute for Scientific Computation, Texas
A&M University, to appear in International Journal of Solids and Structures, 2005.
15. J. E. Santos, Y. Efendiev and L. Guarracino, Permeability estimation in variable saturated soils using the adjoint method,
Technical Report Series ISC-05-05-MATH, Institute for Scientific Computation, Texas A&M University, submitted to Com-
puter Methods in Applied Mechanics and Engineering.
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MA 598M: Basic Algebraic Geometry II
Instructor: Prof. Abhyankar, office: Math 600, phone: 49–41933, e-mail: ram@math.purdue.edu
Time: TTh 1:30-2:45 (THE MEETING OF CLASSES WILL START ON JANUARY 31
Description: This will be an introduction to algebraic geometry. There are no prerequisites and all interested students are
welcome. Although in some sense this is a continuation of the Fall 2005 course MA 598G, we shall make a fresh start. There
will be several extra help sessions organized for beginning students. Here are descriptions of possible topics to be covered.
• ANALYSIS AND RESOLUTION OF SINGULARITIES OF PLANE CURVES: A plane curve C of degree n is given

by a polynomial equation F (X,Y ) = 0 of degree n. By translation of coordinates, any point P of C can be brought to the
origin (0, 0). Now F = Fd +Fd+1 + · · ·+Fn where Fi is homogeneous of degree i with Fd 6= 0 6= Fn. P is a simple point of C
means d = 1; otherwise it is a multiple point of multiplicity d. The distinct factors of Fd, say h of them, are the tangents to
C at P . Applying a QDT = Quadratic Transformation centered at P amounts to substituting X = X ′ and Y = X ′Y ′ to get
F (X ′, X ′Y ′) = X ′dF ′(X ′, Y ′). This explodes P into points P ′1, . . . , P

′
h of the proper transform C′ : F ′ = 0 of multiplicities

d′1, . . . .d
′
h with d′1 + · · ·+ d′h ≤ d. These are points in the first neighborhood of P . Iterating this we get points in the second

neighborhood, and so on. Collectively they are point infinitely near to P . Let δ(P ) =
∑ µ(Q)(µ(Q)−1)

2 where µ(Q) is the
multiplicity at Q and the summation over all points Q infinitely near to P . Assuming C to be devoid of multiple components,
Max Noether (1875) proved δ(P ) <∞. Dedekind (1882) proved δ(P ) to be length of the conductor of the local ring of P on

C. Assuming C to be irreducible he showed g(C) = n(n−1)
2 −

∑
δ(P ) where the sum is over all singular (= nonsimple) points

P of C and g(C) is the genus of C defined by Jacobi (1830) to be the number of independent regular differentials on C.
• HIGHER DIMENSIONAL DESINGULARIZATION. Extending QDTs to spaces of higher dimension we get MDTs =

Monoidal Transformations. Zariski (1939-1944) in characteristic 0 and Abhyankar (1954-1965) in characteristic p 6= 0 showed
that by using MDTs, the Noether procedure can be generalized to varieties of dimension 2 and 3. Hironaka (1964) extended
this to characteristic 0 and any dimension. Abhyankar (1963) did it in the “arithmetic case” for dimension 2. We shall
explore the possibilities of generalizing all this to higher dimension for nonzero characteristic as well as for the arithmetic
case.
• RATIONAL AND POLYNOMIAL PARAMETRIZATION. Curve genus formulas can be used to decide when a curve

can be rationally parametrized or even polynomially parametrized. Corresponding surface genus formulas can be used in a
similar, but much more complicated, manner.
• CALCULATION OF FUNDAMENTAL GROUPS. Genus formulas can be used for calculating fundamental groups.

In case of nonzero characteristic, they have to be supplemented with the theory of finite simple groups.
Texts: (1) Algebraic Geometry for Scientists and Engineers, Shreeram S. Abhyankar, Published by Amer Math Soc.
(2) Ramification Theoretic Methods in Algebraic Geometry, Shreeram S. Abhyankar, Published by Princeton U. Press.

MA 598S: Group Actions and Algebraic Topology
Instructor: Prof. Wilkerson, office: Math 700, phone: 49–41955, e-mail: wilker@math.purdue.edu
Time: MWF 9:30
Description: The action of finite groups and compact Lie groups on manifolds and other finite dimensional topology spaces
has a long history. As an example, for p a prime number :

Let G be a finite p-group acting on a finite CW complex X . Then the Euler characteristic of X and the fixed point set
XG are congruent mod p.

The class will begin with the work of the Borel Seminar (50’s) on the foundations of Smith theory and proceed to
the techniques needed to prove the Sullivan conjecture, which relates the algebraic topology of the fixed point set to that
of an approximation, the homotopy fixed point set. One of tools used will be Steenrod algebra, which acts on the mod p
cohomology of a topological space.
Text: (1) L. Schwartz Notes, University of Chicago Press.
(2) original references.

MA 598U/STAT 598W: Design and Analysis of Financial Algorithms
Instructor: Prof. Viens, office: Math 504, phone: 49–46035, e-mail: viens@stat.purdue.edu
Time: Arrange Hours
Prerequisite: The student must have a working knowledge in financial mathematics at the MS level, as provided for example
by MGMT 641 or IE 590 A, and a prior knowledge of Excel, or should have passed MA 516/STAT 541. A basic knowledge
of object-oriented programming prior to starting the course is helpful.
Description: Information technology (IT) has become a major function in the financial industry. The industry has been
employing different software and programming languages to process and maintain the data, to price equity and fixed income
derivatives and to predict the stock movement. With good programming skills, one can excel in his/her job performance. In
this course, we expect to learn Excel VBA, C/C++, MATLAB and GAMS/CPLEX which are some of most useful program-
ming tools in financial firms.
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MA 611: Methods of Applied Mathematics I
Instructor: Prof. Danielli, office: Math 802, phone: 49–41920, e-mail: danielli@math.purdue.edu
Time: TTh 1:30-2:45
Prerequisite: MA 511, 544
Description: Banach spaces; linear operators; the Open Mapping Theorem and the Closed Graph Theorem; the Hahn-
Banach Theorem; weak topologies; the Fredholm-Riesz-Schauder theory and elements of Spectral Theory for compact op-
erators; Hilbert spaces; the Projection Theorem; the Riesz Theorem and the Lax-Milgram Lemma; self-adjoint operators.
Applications to ordinary and partial differential equations.
Text: A. Friedman, Foundations of Modern Analysis, Dover
Additional recommended reference: Hl. Brezis Analyse Functionnelle - Theorie et applications, Masson.

MA 615 (meets with CS 615): Numerical Methods For Partial Differential Equations I
Instructor: Prof. Cai, office: Math 810, phone: 49–41921, e-mail: zcai@math.purdue.edu
Time: TTh 12:00-1:15
Prerequisite: MA 514, 523
Description: Finite element method for elliptic partial differential equations; weak formulation; finite-dimensional ap-
proximations; error bounds; algorithmic issues; solving sparse linear systems; finite element method for parabolic partial
differential equations; backward difference and Crank-Nicholson time-stepping; introduction to finite difference methods for
elliptic, parabolic, and hyperbolic equations; stability, consistency, and convergence; discrete maximum principles.
References: 1.) S. Brenner and R. Scott The Mathematical Theory of Finite Element Methods
2.) J. Strikwerda, Finite Difference Schemes and Partial Differential Equations

MA 631: Several Complex Variables
Instructor: Prof. Catlin, office: Math 744, phone: 49–41958, e-mail: catlin@math.purdue.edu
Time: MWF 11:30
Prerequisite: MA 530
Description: Holomorphic functions, Power series, representation by integrals, extension of functions, pseudoconvex do-
mains, Hörmander weighted estimates for ∂, Cousin problems, Weierstrass preparation theorme, local theory of analytic
sets.
Text: Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand.

MA 643: Methods of Partial Differential Equations II
Instructor: Prof. Phillips, office: Math 706, phone: 49–41939, e-mail: phillips@math.purdue.edu
Time: MWF 2:30
Prerequisite: MA 642
Description: Continuation of MA 642. Topics to be covered are Lp theory for solutions of elliptic equations, including
Moser’s estimates, Aleksandrov maximum principle, and the Calderon-Zygmund theory. Introduction to evolution problems
for parabolic and hyperbolic equations, including Galerkin approximation and semigroup methods. Applications to nonlinear
problems.
References: L.C. Evans Partial Differential Equations
Text: D. Gilbarg and N.S. TrudingerElliptic Partial Differential Equations of Second Order

MA 650: Commutative Algebra
Instructor: Prof. Heinzer, office: Math 636, phone: 49–41980, e-mail: heinzer@math.purdue.edu
Time: MWF 3:30
Prerequisite: MA 558
Description: I plan to cover material from the text Commutative Ring Theory by H. Matsumura. In particular, the course
will cover: properties of extension rings, integral extensions, valuation rings, dimension theory of graded rings, the Hilbert
function and Hilbert polynomial, systems of parameters and multiplicity, the dimension of extension rings, regular sequences
and the Koszul complex, Cohen-Macaulay rings, Gorenstein rings, regular rings and UFDs.
Text: Matsumura Commutative Ring Theory, Cambridge University Press
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MA 661: Modern Differential Geometry
Instructor: Prof. Donnelly, office: Math 716, phone: 49–41944, e-mail: hgd@math.purdue.edu
Time: MWF 9:30
Description: Introduction to Reimannian geometry. Levi–Civita connection and curvature tensor. Geodesics and Hopf–
Rinow theorem. Expenential map and normal coordinates. Submanifolds and second fundamental form. First and second
variation formula. Jacobi fields. Curvature and toplogy.
Text: John M. Lee, Riemannian manifolds, An Introduction to Curvature.

MA 665: Algebraic Geometry
Instructor: Prof. Arapura, office: Math 642, phone: 49–41983, e-mail: dxb@math.purdue.edu
Time: TTh 12:00-1:15
Description: Broadly speaking, algebraic geometry is the study of sets of solutions to polynomial equations. These solutions
may be considered over the field of complex numbers, or over more general fields or rings. As you might guess, there are
many connections to algebra, complex analysis, number theory, topology... I hope the course may be useful to people who
plan to work in these areas. Some more information is on my class webpage http://www.math.purdue.edu/ dvb/algeom.html

Unfortunately, the path to understanding in the subject is strewn with a number of obstacles. You have to master a
lot of technical material while simultaneously developing a geometric intuition. It’s next to impossible to do all of this in a
semester. So I’m going to draw the line through the middle, and concentrate on varieties rather than schemes and say nothing
about sheaf cohomology. I’ll try to keep the prerequisites to a minimum: Some commutative algebra, point set topology, and
calculus (tangent planes and stuff like that).

MA 684: Class Field Theory
Instructor: Prof. Yu, office: Math 738, phone: 49–41946, e-mail: jyu@math.purdue.edu
Time: TTh 10:30-11:45
Prerequisite: MA 584 (algebraic number theory). Group cohomology and relevant facts from algebraic geometry will be
covered as needed.
Description: Class field theory is the study of abelian extensions of local fields, number fields, and function fields. It is the
crowning achievement of number theory in the early 20th century, and now a basic knowledge for any one working in number
theory. As such, it admits diversed approaches and views, leading to different ramifications in modern number theory.

This semester we will do it in a way different from recent offerings of this course. Group cohomology will be used as a
basic machinery, and more emphasis will be put in the function field case, where the proof is easier as one can utilize extra
insights from algebraic geometry. We will also give the formulation of the number field case in the ideal theory language,
but not the full proof. In additions to the main theorems, we may cover topics such as non–abelian L–functions, Chebotarev
density theorem, constructions of class fields, and Tate’s thesis.
Text: Serre, Algebraic groups and class fields, Springer-Verlag.
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MA 690K: Arithmetic Theory of Fundamental Groups
Instructor: Prof. Kim, office: Math 748, phone: 49–43173, e-mail: kimm@math.purdue.edu
Time: TTh 3:00-4:15
Description: Much progress in number theory and algebraic geometry in the second half of the twentieth century was
achieved using the homological view of algebraic and arithmetic geometry. The ideas there included various kinds of coherent
sheaf cohomology, Hodge theory, and the cohomology of Grothendieck topologies.

In the meanwhile, towards the end of the century, it became increasingly clear that the incorporation of homotopical
methods would be even more far-reaching in its applications. A notable example is the use of stable homotopy theory in
Voevodsky’s approach to motivic cohomology.

In this course, we will study arithmetic uses of homotopy from a different perspective, namely, that of the fundamental
group. This approach confers to the subject a far more non-linear flavor than that of Voevodsky. We will start by reviewing
Grothentieck’s theory of the fundamental group (which subsumes classical Galois theory), move through the study of Galois
actions on fundamental groups (Ihara’s theory), briefly describe the motivic fundamental group studied by Deligne (touching
on certain aspects of non-abelian Hodge theory and the function theory of multiple polylogarithms), and finish with the
important topic of anabelian geometry. Here, the geometry of certain kinds of schemes will end up being completely encoded
into their fundamental groups, in a manner reminiscent of hyperbolic geometry. A nice example of the kind of theorem we
will discuss towards the end is the one of Neukirch and Uchida:

All automorphisms of Gal(Q̄/Q) are inner.

In spite of all these words, the main ideas of the course should be accessible to students with a general background in
algebra, geometry, and topology. In fact, a large part of the charm in this study is the seamless manner in which elementary
lines of investigation can be woven into a continuous fabric of deep mathematics. Background reading will be assigned for
the more technical portions.

MA 692B: Fourier Integral Operators
Instructor: Prof. Sá Barreto, office: Math 604, phone: 49–41965, e-mail: sabarre@math.purdue.edu
Time: MWF 1:30
Prerequisite: The student should have a good knowledge of the theory of distributions and be reasonably familiar with
differential geometry (at least know that a manifold, a submanifold, the tangent and cotangent bundles, and vector fields
are)
Description: The course will be an introduction to the theory of Fourier integral operators and its calculus. These kinds of
operators, which are given by oscillatory integrals, appear in several areas of mathematics and physics, including geometrical
optics and quantum mechanics. The definition of a Fourier integral operator is simply a precise mathematical formulation
of quantization. Namely the correspondence between functions of domain and frequency variables, and operators acting on
a Hilbert space.
References: 1.) J. Brun̈ing and V. Guillemain, Fourier Integral Operators, Springer Verlag
2.) J. J. Duistermaat, Fourier Integral Operators, Birkhäuser
3.) A. Grigis and J. Sjöstrand, Microlocal Analysis of Differential Operators, Campridge University Press.
4.) Lars Hörmander, The Analysis of Linear Partial Differential Operators, vols. 3 and 4, Springer Verlag.

MA 692F: Special Topics in Mathematical Epidemiology
Instructor: Prof. Feng, office: Math 814, phone: 49–41915, e-mail: zfeng@math.purdue.edu
Time: MWF 11:30
Description: This course focuses on the application of mathematical methods and concepts to the description and analysis
of biological processes. Emphasis will be on mathematical approaches for the study of population dynamics in epidemiology.
The mathematical contents consist of difference and differential equations and elements of stochastic processes. The topics
to be covered include dynamical systems theory motivated in terms of its relationship to biological theory, deterministic
models of epidemiology, coevolutionary systems, structured population models, stochastic processes, and introduction to
Mathematica and MATLAB (computer packages). Bio-mathematical research projects (in small group) may be carried out.
References: (1) Brauer and Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology (optional)
(2) Thieme Mathematics in Population Biology (optional)
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MA 692T: Advanced Scientific Computing and Numerical Analysis
Instructor: Prof. Shen, office: Math 806, phone: 49–41923, e-mail: shen@math.purdue.edu
Time: TTh 9:00-10:15
Prerequisite: A good knowledge on the polynomial approximation results in Sobolev spaces and on the basic implementation
of spectral methods
Description: A variety of scattered topics will be covered in this course. Among them are:

* Boundary perturbation method
* Domain decomposition method and parallel computing
* Helmholtz equation and Maxwell equation in exterior domains
* Splitting methods for incompressible flows
* Phase–field model for complex fluids

Some typed lecture notes will be distributed. No textbook is needed.

MA 693C: Complex Analysis in Banach Spaces
Instructor: Prof. Lempert, office: Math 728, phone: 49–41952, e-mail: lempert@math.purdue.edu
Time: MWF 10:30
Prerequisite: Some knowledge of Several Complex Variables (MA 631 is more than enough) and of basic sheaf theory.
Description: The course will start with basics of the subject (holomorphic and plurisubharmonic functions, pseudoconvex-
ity), then turn toward more modern developments: sheaf theory and analytic cohomology in Banach spaces.
References: 1.) Mujica, Complex Analysis in Banach Spaces, North Holland
2.) Original articles.

MA 694G: Elliptic and Parabolic PDEs II
Instructor: Prof. N. Garofalo, office: Math 616, phone: 49–41971, e-mail: garofalo@math.purdue.edu
Time: TTh 12:00-1:15
Description: This course is intended as a continuation of MA 694 taught in the Fall semester, Since the course will assume
no special prerequisites it can be profitably taken also by students who have not taken MA 694 in the Fall. We will continue
developing some recent, and less recent, trends in elliptic and parabolic PDE’s related to variational inequalities and free
boundary problems. Special emphasis will be given to parabolic equations and free boundary problems involving them. We
will begin with a detailed discussion of those results on the boundary behavior of nonnegative solutions of parabolic PDE’s
in non-smooth domains whch constitute the backbone of the theory. We will then move on to discuss various free boundary
problems and singular perturbation problems. We will discuss the Stefan problem and those more recent developments con-
cerning two-phase free boundary problems, such as monotonicity formulas due to Alt-Caffarelli-Friedman and to Caffarelli,
and their applications. The course will have an entirely self-contained character.
References: L. Caffarelli and S.Salsa, A geometric approach to free boundary problems

MA 694M: Levy Processes and Stochastic Analysis II
Instructor: Prof. Ma, office: Math 620, phone: 49–41973, e-mail: majin@math.purdue.edu
Time: TTh 1:30-2:45
Prerequisite: MA538, 539, or consent of instructor.
Description: This is a continuation of MA694F of Fall 2005. Upon finishing the text book materials, the main focus of the
course will be the topic of stochastic differential equations driven by Lévy processes. In particular, some recent study of SDEs
driven by symmetric stable processes will be studied in depth. Some applications of Lévy processes and stable processes in
option pricing theory in finance will be presented as well.
Text: David Applebaum Lévy Processes and Stochastic Calculus, Cambridge Studies in advanced mathematics 93, Cam-
bridge University Press, 2004.
Suggest Reading: 1) J. Bertoin Lévy Processes, Cambridge University Press (1996)
2) K-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press (1999).

Courses and Seminars of Interest to Graduate Students offered by the Mathematics Department, Spring, 2006 — page 8



MA 694S: Stochastic Partial Differential Equations II
Instructor: Prof. Roeckner, office: Math 432, phone: 49–41963, e-mail: roeckner@math.purdue.edu
Time: TTh 10:30-11:45
Prerequisite: MA 694R, or consent of the instructor
Description: This will be the second part of MA 694R (though newcomers are welcome). The contents of the course will
very much depend on how much material of the subject will be covered by the course in the fall semester 2005. Possible topics
to be included are: mild solutions of SPDE (existence, uniqueness, special properties, their invariant measures), Kolmogorov
equations in infinite dimensions, stochastic Navier-Stokes equations (in particular in 3 dimensions).
References: 1) Giuseppe DaPrato, Jerzy Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press
1992.
2) Giuseppe DaPrato (editor), Lecture Notes Math. 1715, Springer 1999.
3) Franco Flandoli, Stochastic Navier Stokes Equations in 3D, Lectures given at CIME Summer School, Cetraro 2005, Lecture
Notes Math., Springer 2005, to appear.

MA 696W: Resolution of Singularities in Characteristic Zero
Instructor: Prof. Wlodarczyk, office: Math 602, phone: 49–62835, e-mail: wlodar@math.purdue.edu
Time: TTh 10:30-11:45
Prerequisite: none
Description: We want to discuss the subject of singularities and their resolution from scratch. One of the goals of this
course is to present a simplified Hironaka algorithm of resolution of singularities of algebraic varieties and analytic spaces.
Text: Wlodarczyk Simple Hironaka Resolution, JAMS
References: 1.) Kollar Settle lecture
2.) Cutkosky Resolution of singularities
3.) Villamayor (and simplification by Wlodarczyk and Matsuki), Resolution of singularities in characteristic zero with focus
on the inductive algorithm
4.) Wisniewski Notes on singularities
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—————
Seminars
—————

Algebraic Geometry Seminar, Prof. Abhyankar
Time: Thursday 4:30–6:00

Automorphic Forms and Representation Theory Seminar, Prof. Yu
Time: Thursdays, 1:30

Commutative Algebra Seminar, Prof. Heinzer
Time: Wednesdays 4:30-5:20

Computational and Applied Math Seminar, Prof. Shen
Time: Fridays 3:30

Computational Finance Seminar, Prof. Ma
Time: Fridays 2:30

Function Theory Seminar, Prof. Eremenko
Time: flexible.

Geometric Analysis Seminar, Prof. Lempert
Time: Monday 3:30

Foundations of Analysis Seminar, Prof. de Branges
Time: Thursday 9:30-10:20

Mathematical Biology, Prof. Feng
Time: Fridays, 2:30

Operator Algebras Seminar, Prof. Dadarlat
Time: Tuesdays, 2:30

PDE Seminar, Prof. Phillips
Time: Thursdays, 3:30

Probability Seminar, Prof. Viens
Time: Mondays 12:30

Spectral and Scattering Theory Seminar, Prof. Sá Barreto
Time: Thursdays 4:30

Topology Seminar, Prof. McClure
Time: Tuesday 1:30-2:20

Working Algebraic Geometry Seminar, Profs. Arapura and Matsuki
Time: Wednesday 3:30-5:00

Working Graduate Student Research Seminar - The FBI Transform, Profs. de Hoop and SaBarreto
Time: Tuesdays and Thursdays 10:30
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