
Introduction to Partial Differential Equations

Instructor: Professor Harold Donnelly

Course Number: MA 52300

Credits: Three

Time: 10:30–11:20 AM MWF

Description

First order quasi-linear equations, characteristics, classification, and canonical form for linear

equations, equations of mathematical physics, study of Laplace, wave, and heat equations, connec-

tion with differential geometry, Cauchy-Kovalevsky theorem.

Abstract Algebra II

Instructor: Professor Bernd Ulrich

Course Number: MA 55800

Credits: Three

Time: 4:30–5:20 PM MWF

Introduction in Algebraic Topology

Instructor: Professor Ralph Kaufmann

Course Number: MA 57200

Credits: Three

Time: 8:30–9:20 AM MWF

Description

The course is an introduction to algebraic topology. The focus will be on homology and coho-

mology theory which are a basic tool in many subjects. It is fundamental for topology, but also

important for many other fields, such as differential, symplectic and algebraic geometry, number

theory, mathematical physics, data science etc.

We will treat the classical simplicial and singular homology and cohomology, but we also plan

to cover CW complexes and differential forms and more advanced topics as time permits.

The basic text for the course will be Elements of Algebraic Topology by James R. Munkres with

additions from other sources and the lecture to update the material to a more modern presentation.

These will be made available.



Introduction to Model Theory

Instructor: Professor Saugata Basu

Course Number: MA 59800CIMT

Credits: Three

Time: 12:00–1:15 PM TTh

Description

The course will be an introduction to model theory. We will cover the basic theory including:

definitions of structures, languages and theories, model–completeness and quantifier elimination,

ultrafilters and compactness theorem, types, categoricity, and stability. I will try to emphasize

certain key examples, like o-minimal structures, and hopefully get to the point of discussing some

more modern aspects, like connections with number theory and combinatorics. An outcome of (and

motivation behind) the course is to be in a position to understand the recent works of Hrushovski

and Loeser on stably dominated types and its application in the study of non-archimedean geometry

(such as the properties of Berkovich analytic spaces).

I will assume no prerequisite in logic and fill in any background in set theory that might be

needed.

Textbook:

1. A course in model theory by K. Trent and M. Ziegler, Cambridge ASL Series.

2. A course on basic model theory, by H. Sarbadhikari and S. M. Srivastava, Springer.

3. Non-Archimedean Tame Topology and Stably Dominated Types (AM-192) (Annals of Mathe-

matics Studies), E. Hrushovski and F. Loeser.

Mathematical Aspects of Neural Networks

Instructor: Professor Greg Buzzard

Course Number: MA 59800CMNN

Credits: Three

Time: 2:30–3:20 PM MWF

Description

Neural networks have dramatically changed the capabilities of computers to perform tasks such

as image classification and processing, image generation, voice recognition, and game playing, and

many others. I will give an overview of the development of neural networks, describe the primary

architectures and training methods, and describe some of the mathematical results associated

with neural networks. Required work will include programming projects, oral presentations on

research papers, and a final group project that includes a written paper and a neural network

implementation. Some prior programming experience is required, as well as solid understanding of

both linear algebra and probability at the level of a good undergraduate course.



Numerical Methods for PDEs

Instructor: Professor Xiangxiong Zhang

Course Number: MA 61500

Credits: Three

Time: 1:30–2:45 PM TTh

Description

The lectures will start with finite difference methods for the Poisson equation. The main focus of

this course will be various aspects (accuracy, stability and convergence) of finite difference methods

for time dependent problems including wave equations and parabolic equations. Linear system

solvers (including the conjugate gradient method and the multigrid method) and ODE solvers such

as Runge-Kutta method will also be discussed. If time permits, the finite element method will be

briefly introduced. Homework and the final exam will consist of both analysis problems and coding

by Matlab. Sample Matlab codes will be provided thus prior knowledge on coding is not required.

Recommended prerequisites include linear partial differential equations, linear algebra and Fourier

analysis, which will be reviewed during the lectures.

Calculus of Variations

Instructor: Professor Donatella Danielli–Garofalo

Course Number: MA 64400

Credits: Three

Time: 10:30–11:20 AM MWF

Description

The calculus of variations is one of the classical subjects in mathematics. Besides its links

with other branches of mathematics (such as geometry, optimal control theory, and differential

equations), it is widely used in physics, engineering, economics, and biology. The essence of the

calculus of variations is to identify necessary and sufficient conditions that guarantee the existence

of minimizers for integral functionals of the type

F(u; Ω) =

∫
Ω

F (x, u,Du) dx.

In this course we will focus on the so–called direct methods, which consist in proving the existence

of the minimum of F directly, rather than resorting to its Euler equation (that is, an associated

PDE or system of PDEs). The central idea is to consider F as a real–valued mapping on the space

of functions taking on ∂Ω given boundary values, and applying to it a generalization of Weierstrass’

theorem on the existence of the minimum of a continuous function. One of the main issues in this

approach is to identify the Sobolev spaces as the proper function spaces for compactness results

to hold. In turn, the solution of the existence problem in the Sobolev class opens up a series of

questions about the regularity of the minimizers. This was a long–standing open problem, until

the way to its solution (in a non-direct fashion, since it involves the Euler equation) was opened



by the celebrated De Giorgi–Nash–Moser result concerning the Hölder continuity of solutions to

uniformly elliptic PDEs in divergence form with bounded and measurable coefficients. A first step

towards the use of direct methods in the regularity issue came from a 1982 paper by Giaquinta and

Giusti, who proved the Hölder continuity of quasi-minima, that is functions u for which

F(u;K) ≤ QF(u+ φ;K)

for every φ with compact support K ⊂ Ω. The notion of quasi-minima reduces of course to the one

of minimum when Q = 1, but it is substantially more general, since it includes solutions of linear

and nonlinear elliptic equations and systems. The course will follow the path outlined above, and

it will combine the classical approach to the subject with its latest developments. In particular,

we will analyze some beautiful examples, such as the obstacle problem, whose study culminated in

the theory of free boundary problems.

Prerequisites: The course will be essentially self-contained. The only prerequisites are familiarity

with the Lebesgue integral and the first properties of Lp spaces, as well as a basic knowledge of

Sobolev spaces.

Introduction to Algebraic Geometry II

Instructor: Professor Jaroslaw Wlodarczyk

Course Number: MA 69000AG

Credits: Three

Time: 3:00–4:15 PM TTh

Description

The course in Algebraic Geometry is a continuation of the fall 2018 AG course and is based

upon Hartshorne’es Algebraic Geometry: Chapters 2 and 3 and Mumford’s Red book, and others.

The important part of the class will be solving problems from Hartshorne’s book and others.

The tentative list of the topics includes but is not limited to:

- Projective morphisms

- Ample divisors

- Flatness

- Derived functors

- Coherent and Quasicoherent modules

- Cohomology of Sheave

- Formal schemes

Textbook:

Algebraic Geometry by Robin Hartshorne

The Red Book of Varieteies and schemes by David Mumford

Basic Algebraic Geometry (Part 1 and 2) by Igor Shafarevich



Homework:

Problem solving is vital for this class. I will actively seek groups of volunteers to report their

solutions in the problem sessions.

Regarding Commutative Algebra: It is very useful to have basic working knowledge of commutative

algebra, at the level of Introduction to Commutative Algebra by Atiyah and Macdonald, before

plunging into Hartshorne’s book.

Exams: No exam.

Representation Theory of Real Lie Groups

Instructor: Professor Freydoon Shahidi

Course Number: MA 69000ARTLG

Credits: Three

Time: 9:30 AM-10:20 PM MWF

Description

Representation theory of Lie groups is of significance not only by itself, but for many applica-

tions that it has in other subjects and disciplines including physics. The course is aimed to cover

some of the fundamental concepts of representation theory of real reductive groups, mainly their

infinite dimensional representation theory which may be considered as a continuation of the present

course offered by Basu. The topics include:Reductive groups and basic notions of their representa-

tion theory, a brief survey of representations of compact Lie groups, universal enveloping algebra

and smooth vectors, discrete series, induced representations, admissible representations and some

discussions of Langlands classification of their irreducible ones. Examples of reductive groups are

classical groups and they will be used to provide examples throughout the course.

Prerequisite: Some knowledge of manifolds, tangent spaces, Lie algebras and Lie groups.

Textbook:

We will follow Anthony Knapp’s orange book: Representation Theory of Semi-simple Groups,

Princeton University Press, 1986.

Reference for compact groups and prerequisites: T. Brocker and T. Dieke: Representations of

Compact Lie Groups, GTM98, Springer, 2003



The Theory of Multiplicities and Mixed Multiplicities

Instructor: Professor Bernd Ulrich

Course Number: MA 69000MULT

Credits: Three

Time: 3:30–4:20 PM MWF

Description

Multiplicities are an important tool in commutative algebra and algebraic geometry, especially

in connection with enumerative questions. They have applications in intersection theory, equi-

singularity theory, and the study of integral closures, for instance. In addition to the classical

Hilbert-Samuel multiplicity, we will treat more general notions, such as mixed multiplicities, gen-

eralized multiplicities, and intersection numbers.

The course serves in some sense as a continuation of MA 65000. However, it should be accessible

to anybody with basic knowledge in commutative algebra.

Prerequisites: Basic knowledge about commutative rings (such as the material of MA 557).

Quantitative Geometric and Functional Inequalities

Instructor: Dr. Emanuel Indrei

Course Number: MA 69300QGFI

Credits: Three

Time: 8:30–9:20 AM MWF

Description

In recent years there has been much research devoted to the study of functional and geometric

inequalities which quantify proximity to optimizers. For instance, the isoperimetric inequality states

that given a set E ⊂ Rn such that |E| = |B1|,

P (E) ≥ P (B1),

where B1 is the unit ball in Rn, P (E) denotes the perimeter of E, and |E| denotes the Lebesgue

measure of E; equality holds if and only if E is a ball. Such a result is classical and there has been

an effort to understand sharp perturbative results: if δ(E) = P (E)
P (B1)

−1, then does δ(E) << 1 imply

that E is close to B1 (up to a translation)? The difficulty of such questions involves understanding

the appropriate conditions for which

(i) the inequality makes sense, i.e., identifying the necessary regularity assumptions to define the

perimeter;

(ii) what types of functionals quantify proximity to a ball;

(iii) whether such quantifications are optimal.

These issues have been classical problems in the calculus of variations and well-known metrics

may not yield a suitable quantification. For instance if one considers the Hausdorff metric, then



a ball with a thin long neck attached to it will produce a large distance to an optimizer although

δ(E) could be made arbitrarily small. Given two sets A an B, let

A∆B = (A \B) ∪ (B \A)

denote the symmetric difference. The following inequality holds for sets of finite perimeter that

satisfy |E| = |B1|:

inf
x∈Rn

|E∆(x+B1)|
2 ≤ cnδ(E),

where the exponent 2 is sharp in every dimension. There are several proofs involving symmetriza-

tion techniques, optimal transport theory, and partial differential equations. There are also several

extensions to anisotropic settings in which the minimizer is a convex set instead of a ball and one

can also allow the ambient space to be a convex cone (instead of Rn). Analogous quantitative

results hold for the polygonal isoperimetric inequality, the classical Sobolev inequality, the loga-

rithmic Sobolev inequality, and the Brunn-Minkowski inequality. In this course, we will study such

inequalities and applications.

Course grade: The course grade is based on an in-class presentation.

Hilbert Spaces of Entire Functions (Spectral Theory)

Instructor: Professor Louis de Branges de Bourcia

Course Number: MA 69400ST

Credits: Three

Time: 9:30–10:20 AM MWF

Description

The purpose of this course is to recruit doctoral students for the spectral theory of differential

equations using the theory of Hilbert Spaces of Entire Functions.

The text for the course is available at my webpage under “papers”. I will follow the material

given in my research proposal on the Riemann Hypothesis also available at my webpage under

“papers”. My presentation will be computational starting with polynomials orthogonal with respect

to a measure. Then I will proceed to computations of the spectral theory in the cases when it is

possible using hypergeometrics series. This leads to the interesting special cases of measures which

are periodic of period 2π. Again computations will be presented. The course should lie in the

capacity of all graduate students in mathematics. But students are preferred was have passed

qualifying examinations for the doctoral program. This course is possible but not intended for

students who have already chosen thesis topics.



Topics in Complex Geometry

Instructor: Professor Sai Kee Yeung

Course Number: MA 69600A

Credits: Three

Time: 9:30–10:20 AM MWF

Description

Here are some tentative topics to be discussed, which may be adjusted as the class proceeds.

1) Introduction to L2 estimates.

2) Introduction to L2 cohomology.

3) Introduction to O minimality.

4) Introduction to Andre-Oort conjecture.

5) Introduction to zeta functions.

Prerequisites: 562, 525

Reference: I would provide reference as the class proceeds.

Modular Curves and Surfaces

Instructor: Professor Donu Arapura

Course Number: MA 69600MCS

Credits: Three

Time: 12:00–1:15 PM TTh

Description

The subject lies in the intersection of geometry, broadly speaking, and number theory. So it

should be of interest to students in these areas. A smooth complex algebraic curve can be given

explicitly either by equations or via the uniformization theorem: as P1, a quotient of C or the

upper half plane H by a group Γ of holomorphic automorphisms. To connect these two points

of view, we need to be able to describe the ring of (classical) theta functions/automorphic forms,

i.e. functions which are almost invariant under Γ. The generators and relations in this ring give

the equations. This can be done fairly explicitly for quotients of C (elliptic curves) or of H by

Γ ⊂ SL2(Z) (modular curves). We’ll review the theory of elliptic curves if necessary, but will focus

mostly on the second case. Modular curves are very interesting for lots of different reasons. Among

other things, they are moduli spaces of elliptic curves with extra structure. This interpretation

yields models over Q. The first half of the class will be devoted to this beautiful story.

In the second half, we will look at some higher dimensional generalizations called Shimura

varieties. Rather than emphasizing the general theory, which is pretty technical, we will focus on

low dimensional examples, such as Hilbert or Picard modular surfaces, which can handled by more

explicit methods coming from algebraic surface theory.

Part of my motivation for doing this is to teach basic tools from algebraic curve and surface

theory (e.g. Riemann-Roch, vanishing theorems) in a situation where these are used in serious way.



I won’t assume too much background; some knowledge of algebraic geometry or complex analytic

geometry should be enough. I’ll try to fill in the rest as we need. Besides the standard texts in

these areas, more specific references, that we will follow to some extent, are:

1. Diamond, Schurman, A first course in modular forms.

2. Milne, Introduction to Shimura varieties

3. Shimura, Introduction to the arithmetic theory of automorphic forms

4. Van der Geer, Hilbert modular surfaces


