
Functions Of A Complex Variable I
Instructor: Professor Kiril Datchev

Course Number: MA 53000
Credits: Three

Time: 8:30–9:20 AM MWF

Description

Complex numbers and complex-valued functions of one complex variable; differentiation and con-
tour integration; Cauchy’s theorem; Taylor and Laurent series; residues; conformal mapping; special
topics.

Textbook: ”Introduction to Complex Analysis” by Michael E. Taylor. American Mathematical
Society Graduate Studies in Mathematics #202, 2019.

Elements Of Stochastic Processes
Instructor: Professor Jing Wang

Course Number: MA 53200
Credits: Three

Time: 3:30–4:20 PM MWF

Catalog Description

A basic course in stochastic models, including discrete and continuous time Markov chains and
Brownian motion, as well as an introduction to topics such as Gaussian processes, queues, epidemic
models, branching processes, renewal processes, replacement, and reliability problems.

Probability Theory I
Instructor: Professor Rodrigo Banuelos

Course Number: MA 53800
Credits: Three

Time: 9:30–10:20 AM MWF

Catalog Description

Mathematically rigorous, measure-theoretic introduction to probability spaces, random variables,
independence, weak and strong laws of large numbers, conditional expectations, and martingales.

Ordinary Differential Equations And Dynamical Systems
Instructor: Professor Aaron Yip
Course Number: MA 54300

Credits: Three
Time: 10:30–11:45 AM TTh

PREREQUISITE: One undergraduate course in each of the following topics:

- linear algebra (for example, MA 265, 351),

- differential equation (for example, MA 266, 366),

- analysis (for example, MA 341, 440, 504), or instructor’s consent.



Description

This is a beginning graduate level course on ordinary differential equations. It covers basic re-
sults for linear systems, local theory for nonlinear systems (existence and uniqueness, dependence
on parameters, flows and linearization, stable manifold theorem) and their global theory (global
existence, limit sets and periodic orbits, Poincare maps). Some further topics include numeri-
cal methods, bifurcations, averaging techniques and applications to Hamiltonian mechanics and
population dynamics.

Workload of this course consists of taking turns typing up lecture notes, a short paper (5 to 6
pages) and a final presentation of the paper.

Textbook: James D. Meiss: Differential Dynamical Systems (available online from Purdue)

Real Analysis And Measure Theory
Instructor: Professor Laszlo Lempert

Course Number: MA 54400
Credits: Three

Time: 4:30–5:20 PM MWF

Catalog Description

Metric space topology; continuity, convergence; equicontinuity; compactness; bounded variation,
Helly selection theorem; Riemann-Stieltjes integral; Lebesgue measure; abstract measure spaces;
LP -spaces; Holder and Minkowski inequalities; Riesz-Fischer theorem.

Functions Of Several Variables And Related Topics
Instructor: Professor Antonio Sa Barreto

Course Number: MA 54500
Credits: Three

Time: 4:30–5:45 PM TTh

Description

The Fourier (1768-1830) transform is a 19th century mathematical concept which is fundamental
in 21st century mathematics and science in general. In this course we will study the Fourier
transform in Euclidean space and its applications to partial differential equations. We plan to
cover the following topics:

1. Review of measure theory, Lp spaces and duality.

2. Rapidly decaying functions and their Fourier transform.

3. The inverse Fourier Tranform.

4. Plancherel Theorem and the Fourier transform as a linear operator acting on L2.

5. Tempered distributions and their Fourier transform.

6. The Littlewood Payley decomposition.

7. Sobolev spaces and embedding theorems.

8. Algebras of functions.

9. Introduction to Pseudodifferential Operators in R
n.



10. Elliptic partial differential equations.

11. Almost orthogonality and the Cotlar-Stein Lemma.

12. The Calderón-Vaillencourt Theorem.

13. Introduction to the Paradifferential Calculus and applications to nonlinear elliptic equations
after De Giorgi, J. Nash, J. Moser, etc.

14. The Thomas-Stein Restriction Theorem and applications to partial differential equations.

Textbook: No textbook required. I will write my own lecture notes and post them in Brightspace.
I will also post my handwritten class notes in Brightspace.

Suggested books and articles: See references [1, 2, 3].

Grade: Homework will be assigned.

REFERENCES

[1] Alinhac, Serge; Gérard, Patrick. Pseudo-differential operators and the Nash-Moser theorem.
Graduate Studies in Mathematics, 82. American Mathematical Society, Providence, RI, 2007.
viii+168 pp. ISBN: 978-0-8218-3454-1

[2] Meyer, Yves. Remarques sur un théorème de J.-M. Bony. Proceedings of the Seminar on
Harmonic Analysis (Pisa, 1980). Rend. Circ. Mat. Palermo (2) 1981, no. suppl, suppl. 1,
1-20.

[3] Stein, Elias M. Singular integrals and differentiability properties of functions. Princeton Math-
ematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970 xiv+290 pp.

Introduction To Functional Analysis
Instructor: Professor Andrew Toms

Course Number: MA 54600
Credits: Three

Time: 9:30–10:20 AM MWF

Description

Nets and convergence, Zorn’s Lemma, Banach spaces, dual spaces, the Hahn-Banach Theorem(s),
bounded, compact, and Fredholm operators on Hilbert space, culminating in various versions of
the spectral theorem. Text will be G. K. Pedersen’s Analysis Now, a delightfully action-packed and
inexpensive tome.

Introduction To Abstract Algebra
Instructor: Professor Bernd Ulrich

Course Number: MA 55300
Credits: Three

Time: 3:30–4:20 PM MWF

Catalog Description

Group theory: Sylow theorems, Jordan-Holder theorem, solvable groups. Ring theory: unique
factorization in polynomial rings and principal ideal domains. Field theory: ruler and compass
constructions, roots of unity, finite fields, Galois theory, solvability of equations by radicals.



Linear Algebra
Instructor: Professor Saugata Basu

Course Number: MA 55400
Credits: Three

Time: 1:30–2:20 PM MWF

Catalog Description

Review of basics: vector spaces, dimension, linear maps, matrices determinants, linear equations.
Bilinear forms; inner product spaces; spectral theory; eigenvalues. Modules over a principal ideal
domain; finitely generated abelian groups; Jordan and rational canonical forms for a linear trans-
formation.

Abstract Algebra II
Instructor: Professor Daniel Le
Course Number: MA 55800

Credits: Three
Time: 12:30–1:20 PM MWF

Description

This course is an introduction to representation theory following Representation Theory: A First
Course by Fulton and Harris. Representation theory is an indispensable tool in many different
areas. We will focus on examples from finite groups and Lie algebras. The prerequisites are group
theory and linear algebra (including multilinear algebra and tensor products).

Introduction In Algebraic Topology
Instructor: Professor Jeremy Miller

Course Number: MA 57200
Credits: Three

Time: 12:00–1:15 PM TTh

Description

Math 572 covers homology (and its variant cohomology) which gives an algebraic measurement of
the number and kind of “holes” in a topological space. Homology is a more computable version of
the fundamental group (covered in 571) and its higher generalizations. It is a ubiquitous notion that
appears in far ranging subjects such as complex analysis and arithmetic geometry. We will discuss
applications of homology such as to fixed-point problems. We will review some basic homological
algebra such as Tor groups. Time permitting, we will cover most of chapters 2 and 3 of Hatcher’s
Algebraic Topology.



Graph Theory
Instructor: Professor Giulio Caviglia

Course Number: MA 57500
Credits: Three

Time: 12:00–1:15 PM TTh

Catalog Description

Introduction to graph theory with applications.

Algebraic Geometry II
Instructor: Professor Deepam Patel
Course Number: MA 59800AG

Credits: Three
Time: 12:00–1:15 PM TTh

PREREQUISITE: First semester course in AG (roughly Chapter 1 of Hartshorne, and some of
Chapter 2 including basics of schemes and quasi-coherent sheaves).

Description

This course will be a continuation of the first semester AG course. In particular, we will begin with
the study of cohomology of (quai-coherent) sheaves, leading up to Serre duality and Riemann-Roch
for curves. I anticipate this will take roughly 6-8 weeks (though perhaps longer or shorter depending
on how much is covered during the Fall course). For the remainder of the course, we will cover one
or more (depending on time) of the following topics based on audience interests:This is to let you
know that I have approved this case.

(1) Grothendieck-Riemann Roch

(2) Classification of Algebraic Surfaces

(3) Grothendeick Duality

(4) An introduction to intersection theory and enumerative geometry

Introduction to the circle method and its application
Instructor: Professor Trevor Wooley
Course Number: MA 59800ANT

Credits: Three
Time: 12:00–1:15 PM TTh

PREREQUISITE: Elementary number theory and basic analysis

Description

This course serves as an introduction to analytic number theory via the (Hardy-Littlewood) circle
method. Background results from number theory and harmonic analysis will be reviewed as needed.
Students already familiar with the basic elements of the circle method will acquire knowledge of



more advanced topics, such as the use of smooth numbers, and the delta-function formulation of
the method.

The (Hardy-Littlewood) circle method applies Fourier analysis to count rational or integral
solutions of an equation or inequality in a manner respecting the inherent arithmetic. Developments
in recent years have broadened its impact into additive combinatorics and discrete harmonic analysis
beyond its more traditional role in quantitative arithmetic geometry.

We shall take as our central example Waring’s problem – the problem of understanding the
number of representations of an integer as the sum of a fixed number of k-th powers of positive
integers. Our aims are twofold: (i) to understand the scope and limitations of the circle method,
and (ii) to gain some facility to apply the method, so from time to time there will be technical
material that we’ll just cite rather than prove in any detail. This course is intended to be accessible
to those without any background in analytic number theory, and to provide an introduction to
some basic ideas in analytic number theory.

Assessment: Six problem sets will be offered through the semester, and class participants can
demonstrate engagement with the course by any written and/or in-class presentations featuring
a reasonable subset of these problems – three levels of difficulty: short problems testing basic
skill-sets, extended problems integrating the essential methods of the course, and more challenging
problems for enthusiasts with detailed hints available on request.

Contents:

(i) Discussion of Weyl’s inequality, Hua’s Lemma, and the simplest treatment of Waring’s problem.
This provides an opportunity to discuss the key elements of the major arc analysis, that is, the
singular integral and singular series, that together constitute the product of local densities.

(ii) Smooth numbers – integers all of whose prime divisors are small – and their application in
the circle method. Basic properties of the smooth numbers, including their distribution in
arithmetic progression. Mean value estimates via efficient differencing, and new estimates of
Weyl type.

(iii) Application of smooth Weyl sums to equidistribution modulo 1, including fractional parts
problems, and to upper bounds for the quantity G(k) in Waring’s problem.

(iv) The delta function variant of the circle method and its applications.

The course will be based on the instructor’s lecture notes. Good texts for background reading and
support are: This is to let you know that I have approved this case.

- R. C. Vaughan, The Hardy-Littlewood method, 2nd edn., Cambridge Tract No. 125, Cambridge
University Press, 1997 [Condensed, but the best source in print; updated from the 1981 first edition.]

- H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities, Ann
Arbor Publishers, Ann Arbor, 1962 or the LaTeXed version published by Cambridge University
Press in 2005 [Friendlier for the basics, with material on general homogeneous cubics, but misses
modern developments.]

- M. Nathanson, Additive number theory. The classical bases, GTM 164, Springer-Verlag, New
York, 1996 [Pedestrian approach to the basics in which no corner is cut – good for getting started!]



Introduction To Mathematical Biology
Instructor: Professor Alexandria Volkening

Course Number: MA 59800BM
Credits: Three

Time: 10:30–11:45 AM TTh

Description

This course will introduce participants to mathematical biology with a mathematical modeling-
centric perspective. We will discuss several research vignettes, including examples from epidemi-
ology and developmental biology, and use biological questions to illustrate both classic approaches
and emerging techniques. For example, we will discuss compartmental modeling, dynamics on and
of networks, parameter estimation, reaction-diffusion equations, cellular automaton modeling, and
agent-based modeling. We will also highlight how data-driven methods for equation learning and
topological data analysis (especially persistent homology) are being used in new ways to address
challenges in mathematical biology now.

Complementing this, we will talk about methods for reading biological papers, working with quan-
titative or qualitative data, and effectively communicating mathematics in written and oral form
across disciplinary boundaries. We will use computation, analysis, and modeling. Throughout the
course, we will point out biology–math feedback loops, looking for how math can suggest exper-
iments and how taking a biological perspective can drive new math. The latter portion of this
course will include student presentations and discussions of research papers, and students will each
complete a mini research project.

Other notes: There will be no exams, and grades will be based on participation, presentations, a
few homework assignments, and the mini research project. In terms of background, experience with
linear algebra and differential equations at the undergraduate level will be assumed; I anticipate
that most projects will involve some simulations.

Topics on optimization algorithms
Instructor: Professor Xiangxiong Zhang

Course Number: MA 59800CO
Credits: Three

Time: 9:30–10:20 AM MWF

Description

This is a topic course on optimization algorithms with emphasis on the analysis. Prior knowledge
and experience of numerical optimization algorithms is preferred but not required. The first two
weeks will be an introduction of basic knowledge in numerical optimization such as line search
methods and the convergence. Then I will spend at least 2-3 weeks on each of the following topics
of popular large scale optimization algorithms:

1. Superlinear methods for smooth functions such as the conjugate gradient method and L-BFGS
method.

2. The convex optimization algorithms for nonsmooth functions such as TV minimization and
ell-1 minimization, including the ADMM, primal-dual method, and Douglas-Rachford splitting.

3. Nesterov’s convergence analysis and Nesterov’s acceleration method.

4. Stochastic gradient descent method.



If time permits, Riemannian optimization will also be briefly introduced. No homework will be
assigned, but class attendance will be enforced. A final report and presentation of reading one or
more papers on one particular topic will be required.

Category theory and simplicial methods
Instructor: Professor Manuel Rivera

Course Number: MA 59800CT
Credits: Three

Time: 9:00–10:15 AM TTh

Description

This course will be an introduction to category theory with emphasis on simplicial methods and their
use in topology, homological algebra, and algebraic geometry. In the first part, we begin by carefully
discussing the basic concepts of category theory together with many examples from different fields
of mathematics. These include categories, functors, natural transformations, universal properties,
limits and colimits, adjunctions, monads, and Kan extensions. In the second part, we focus on
developing the basics of simplicial homotopy theory and discuss “derived” versions of some of the
constructions introduced in the first part of the course. We will end with a few glimpses of higher
category theory. This course should be accessible to a relatively wide range of graduate students
with different background and interests. Some familiarity with basic algebraic topology will be
helpful. In the first part of the course we will follow the textbooks ”Category theory in context” by
Emily Riehl and “Categories for the working mathematician” by Saunders MacLane supplemented
by more examples and applications. In the second part, we follow some of “Categorical homotopy
theory” by Riehl, parts of “Methods of homological algebra” by Gelfand and Manin, and parts of
“Simplicial homotopy theory” by Goerss and Jardine.

Radon Transforms
Instructor: Professor Plamen Stefanov

Course Number: MA 59800RT
Credits: Three

Time: 4:30–5:45 PM TTh

Description

The Radon transform Rf maps a function f to its integrals along all (hyper-)planes. The
associated X-ray transform Xf integrates f along all lines. A fundamental problem is the inversion
of those transforms in various situations: with full data (there are explicit formulas then), with
incomplete, respectively discrete data, in presence of noise, etc. Studied first by Radon, and
rediscovered by A. Cormack and G. Hounsfield (the 1979 Nobel prize in Physiology and Medicine),
the inversion of the X-ray transform is the mathematical model of CT (Computed Tomography)
scan, also known as CAT scan. More general transforms, like the X-ray transform over geodesics of
a certain metric appear in various applications, for example in seismology, and is of its own interest
in geometry.

We will start and stay mostly with the Euclidean case. The first part of the course will
study the mapping properties of R and X, extension to distributions (which I will briefly introduce
for those not familiar with them), inversion formulas, stability estimates, range conditions, support
theorems, recovery in a region of interest with incomplete data. We will study the X-ray transforms
of tensor fields, as well, and explain the motivation. If time permits, I will introduce the light-ray
transform: integrals of functions f(t, x) over light-rays in the Minkowski metric, and discuss its



invertibility.

The second part of the course will concentrate on the weighted X-ray transform and microlocal
considerations. I will introduce some microlocal concepts briefly and explain what they predict
about recovery of singularities (e.g., edges) with incomplete data, in particular. Numerical examples
will be presented.

The course should be accessible to students having good analysis background, including some
familiarity with functional analysis (Hilbert spaces, linear operators but no deep knowledge is
required), and the Fourier transform. I will follow a book by me and G. Uhlmann which I will
make available online (an older version is on my website even now). This book is still not finished
but the part needed for this course is complete. Relevant books for the first part of the course
are also the classical book by Helgason “Radon Transform”, available for free on his webpage, and
Natterer’s book “The Mathematics of Computerized Tomography”.

Finite Element Methods for Partial Differential Equations
Instructor: Professor Zhiqiang Cai

Course Number: MA 61500
Credits: Three

Time: 1:30–2:45 PM TTh

PREREQUISITE: MA/CS 514 or equivalent or consent of instructor

Description

The finite element method is the most widely used numerical technique in computational science
and engineering. This course covers the basic mathematical theory of the finite element method for
partial differential equations (PDEs) including variational formulations of PDEs and construction
of continuous finite element spaces. Adaptive finite element method as well as fast iterative solvers
such as multigrid and domain decomposition for algebraic systems resulting from discretization will
also be presented. When time permits, neural network as a new class of approximating functions
will also be covered.

References

[1] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, Springer-
Verlag, New York, 2002.

[2] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cam-
bridge University Press, New York, 1997.

[3] C. Johnson, Numerical Solution of Partial differential Equations by the Finite Element Method,
Cambridge University Press, Cambridge, 1987.

Methods Of Linear And Nonlinear Partial Differential Equations II
Instructor: Professor Isaac Harris

Course Number: MA 64300
Credits: Three

Time: 12:00–1:15 PM TTh

Description

Continuation of MA 642. Topics to be covered are Lp theory for solutions of elliptic equations.



Introduction to evolution problems for parabolic and hyperbolic equations including Galerkin ap-
proximation. Applications to nonlinear problems. Here are some topics:

-Linear and Quasi-Linear BVPs

-Boundary Integral Equations

-Basics of Galerkin Methods

-Well-posedness for Evolution Equations

-Applications to Inverse Problems.

Evaluation: The grade will be the average homework assignments given periodically throughout
the semester via Gradescope. All questions will come from topics covered in the lecture.

Reference Texts(optional):

-Partial Differential Equations in Action: From Modeling to Theory by S. Salsa

-Variational Techniques for Elliptic Partial Differential Equations by F. Sayas, T. Brown and M.
Hassell

-Strongly Elliptic Systems and Boundary Integral Equations by W. McLean

-Linear Integral Equations by R. Kress

Class Field Theory
Instructor: Professor Freydoon Shahidi

Course Number: MA 68400
Credits: Three

Time: 10:30–11:20 PM MWF

Description

Class field theory is the study of abelian extensions (finite or infinite) of local and global fields by
means of closed subgroups of idele class group through the Artin reciprocity map. It is a crowning
achievement of number theory in the 20th centry which is still quite influencial in many related fields
including arithmetic geometry, analytic number theory and automorphic forms. In fact, Langlands
program has been an effort to extend (abelian) class field theory to the mysterious non-abelian
setting, including suitable generalizations of Artin reciprocity law.

Syllabus: Ideles, adeles, Hecke L-functions and their continuation, first and second inequalities
of class field theory with related cohomology theory, Artin symbol and reciprocity law, local and
global class fields, Kronecker–Weber theorem.

I will generally follow my notes which are posted on my bio page and available on internet.

Other useful sources are:

1. S. Lang, “Algebraic Number Theory”

2. J. Neukirch, “Algebraic Number Theory”

3. J.W. Cassels and A. Frolich, “Algebraic Number Theory”

The course has no exams. There will be homework assignments which will be graded and will
provide your course grade.


