QUALIFYING EXAMINATION August 1998 MATH 519 - Professor Ma

- 1. A deck (deck #1) of cards has a red cards and b black cards, another deck (deck #2) has α red cards and β black cards. Both decks are well-shuffled. Suppose you pick c ($c \leq a + b$) cards randomly from deck #1 and mix them into deck #2. What is the probability of picking a red card from deck #2 now?
- 2. A clerk in a gas station is rolling a fair dice while waiting for the customers to come. Suppose that the number of times the dice is rolled between two customers has a Poisson distribution with parameter $\lambda = 5$. Let ξ be the total points (of the dice) the clerk observed right before the next customer comes in, determine $E\xi$ and $D\xi$ (standard deviation).
- 3. Let ξ and η be two random variables, both taking only two values. Show that if they are uncorrelated, then they are independent.
- 4. Suppose that $\{X_i\}_{i=1}^{\infty}$ is an i.i.d. sequence with density function p(x); and $\{A_{\varepsilon}\}_{\varepsilon>0}$ is a family of events such that

$$0 < \gamma_{\varepsilon} := \int_{A_{\varepsilon}} p(x) dx = P\{X_1 \in A_{\varepsilon}\} \to 0, \quad \text{as } \varepsilon \to 0.$$

Define, for each N, $\hat{\gamma}_N^{\varepsilon} = \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{\{X_i \in A_{\varepsilon}\}}$ (1_B is the *indicator function* of set B). (i) Find $E(\hat{\gamma}_N^{\varepsilon})$ and $\operatorname{Var}(\hat{\gamma}_N^{\varepsilon})$;

(ii) Suppose N is large enough. For each $\varepsilon > 0$ and N > 0, using the attached Normal Table to determine z_N^{ε} such that the probability that $\hat{\gamma}_N^{\varepsilon} \in (\gamma_{\varepsilon} - z_N^{\varepsilon}, \gamma_{\varepsilon} + z_N^{\varepsilon})$ is (approximately) 0.99.

- (iii) Show that $\lim_{\varepsilon \to 0} \frac{z_N^{\varepsilon}}{\hat{\gamma}_N^{\varepsilon}} = \infty$, a.s., no matter how large N is.
- 5. Let ξ be a random variable with positive density function p(x). Suppose that p is twice differentiable and satisfies the identity

$$\frac{p'(x+y)}{p(x+y)} + \frac{p'(x-y)}{p(x-y)} = 2\frac{p'(x)}{p(x)}, \qquad \forall x, y \in (-\infty, \infty).$$

Show that ξ must be a normal random variable.