Name:

Math 523 Qualifying Exam August 2013

Note: Some of the subquestions (a), (b), etc., in problems 1 and 2 are independent of each other and can be answered even if the previous ones are not answered. You have to justify each answer on this exam.

1. (25 pts)

(a) Write down the fundamental solution of the Laplace operator Δ in \mathbf{R}^3 and explain why it is a fundamental solution (state what a fundamental solution is but do not prove anything).

(b) Given a continuous function f(x) of compact support, write down a particular solution of the equation $\Delta u = f$ in \mathbf{R}^3 in integral form. Prove that this solution is bounded, and converges to 0, as $|x| \to \infty$. Is the solution unique in the class of the bounded functions on \mathbf{R}^3 ? Is it unique in the class of the functions converging to 0, as $|x| \to \infty$?

(c) Let Ω be a bounded domain in \mathbb{R}^3 with smooth boundary. Explain the notion of Green's function $G(x,\xi)$ in Ω and how it is related to the fundamental solution of Δ .

(d) Show that for each fixed $\xi \in \Omega$,

$$\frac{\partial}{\partial \nu_x} G(x,\xi) \ge 0 \quad \text{for } x \in \partial\Omega,$$

where ν is the outer unit normal to $\partial\Omega$.

(e) For each fixed $\xi\in\Omega,$ evaluate

$$\int_{\partial\Omega} \frac{\partial}{\partial\nu_x} G(x,\xi) \, dS_x.$$

2. (18 pts) The Schrödinger equation in \mathbb{R}^n is given by

$$-iu_t = \Delta u, \quad x \in \mathbf{R}^n, \ t \in \mathbf{R},$$
 (1)

where $i = \sqrt{-1}$. Consider the Scrödinger equation (1) with initial condition

$$u|_{t=0} = f(x).$$
 (2)

(a) Is the initial value problem (1), (2) a Cauchy problem?

(b) Let u be a classical solution of (1), (2) with $f \in C_0^{\infty}$. Show that the energy

$$E(t) := \int_{\mathbf{R}^n} |u(x,t)|^2 \, dx$$

remains constant. Here, $|u|^2 = u\bar{u}$, and u is complex-valued. Use the following fact: u and its derivatives decay faster than $C(t)(1+|x|)^{-N}$ for every N and t.

(c) If there is a solution to (1), (2), with a compactly supported f, is it unique (in the class of classical solutions)?

(d) Find an oscillatory solution to (1) of the form

$$u_{\xi}(x,t) = e^{i(\lambda t + x \cdot \xi)},$$

where $\xi \in \mathbf{R}^n$, with some $\lambda = \lambda(\xi)$.

(e) Using the result in (d), write a formula for the formal solution of (1), (2) in the form of an integral with respect to ξ , involving the explicit expression for u_{ξ} that you found above and the Fourier transform $\hat{f}(\xi)$ of f. Assume that $|\hat{f}|$ is integrable. Do not simplify that formula.

3. (15 pts) For the equation

$$xu_x + 2yu_y + u_z = 3u,$$

(a) Find a general solution of the equation.

(b) Describe all planes $P = \{ax + by + cz = d\}$ through the point (1, 1, 1) with the property that there is a guaranteed unique solution of the equation near that points with any prescribed C^1 data on P.

4. (15 pts) Consider the heat equation in a bounded domain $\Omega \subset \mathbf{R}^n$ with smooth boundary with Neumann boundary conditions

$$\begin{split} u_t &= \Delta u, \quad x \in \Omega, \ t > 0, \\ u|_{t=0} &= f(x) \quad \text{for } x \in \Omega, \\ \frac{\partial u}{\partial \nu} &= 0 \quad \text{for } x \in \partial \Omega, \ t > 0. \end{split}$$

(a) If u is a classical solution, prove that the "energy"

$$E(t) = \int_{\Omega} |u(x,t)|^2 \, dx$$

is non-increasing.

(b) Is the solution, if exists, unique?

5. (15 pts) The Klein-Gordon equation is given by

$$u_{tt} - \Delta u + m^2 u = 0, \quad x \in \mathbf{R}, \ t \in \mathbf{R},$$

where m > 0 is fixed.

(a) Formulate the Cauchy problem for that equation with Cauchy data at t = 0. Is that problem solvable (near any point on the plane t = 0)?

(b) Formulate the Duhamel's principle for the problem

$$u_{tt} - \Delta u + m^2 u = h(x, t), \quad x \in \mathbf{R}, \ t > 0, \tag{3}$$

with zero Cauchy data at t = 0 and write down the solution to (3) as an integral involving a solution of a certain homogeneous equation. Prove that the procedure that you found provides indeed a solution of (3) with zero Cauchy data at t = 0. Assume that all integrals that you will get are convergent and differentiation under the integral sign is justified.