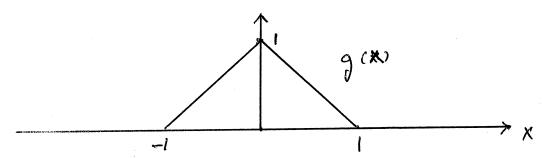
MATH 52300 PDE QUALIFYING EXAMINATION AUGUST 2015

1. **(30 pts)** Set $g(x) = \begin{cases} 1 - |x| & \text{if } |x| \le 1, \\ 0 & \text{if } |x| \ge 1. \end{cases}$



Let u(x,t) denote the bounded solution for each of the three problems below. In each case express u in terms of g. Use the representation to explain why or why not $u(x,1) \in C^1(\mathbb{R})$.

a)
$$u_{tt} - u_{xx} = 0$$

$$u(x,0) = g(x)$$

$$u_t(x,0) = 0$$

$$0 < t, -\infty < x < \infty,$$

$$-\infty < x < \infty$$
,

$$-\infty < x < \infty$$
.

$$b) u_t - u_{xx} = 0$$

$$u(x,0) = g(x)$$

$$0 < t, -\infty < x < \infty$$

$$-\infty < x < \infty$$
.

$$c) u_{tt} + u_{xx} = 0$$

$$u(x,0) = g(x)$$

$$0 < t, -\infty < x < \infty,$$

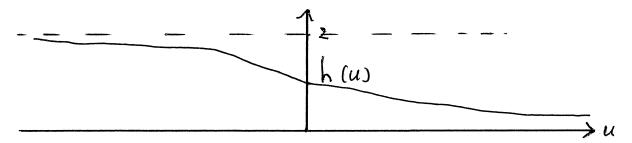
$$-\infty < x < \infty$$
.

2. (15 pts) Let $u(x,t) \in C^2$ and solve

(2.1)
$$u_{tt} - u_{xx} + 3u_t + u = 0 \qquad 0 < x < \pi, t > 0$$
$$u(0,t) = u(\pi,t) = 0 \qquad 0 < t,$$
$$u(x,0) = g(x), \ u_t(x,0) = h(x), \quad 0 \le x \le \pi.$$

- a) Show that $\mathcal{E}(t) = \int_0^{\pi} [u_t^2 + u_x^2 + u^2] dx$ is nonincreasing.
- b) Show that (2.1) has at most one solution.
- c) Find the solution to (2.1) is the case when $g(x) = \sin x$ and h(x) = 0. (Hint; look for a separable solution.)

3. (20 pts) Let $h(u) \in C^1(\mathbb{R})$ such that 0 < h(u) < 2 and h'(u) < 0 as pictured below



Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth $\partial \Omega$. Assume $\Omega \subset \overline{B}_1(0)$.

- a) State the maximum principle for a function $u \in C^2(\Omega) \cap C(\overline{\Omega})$ with $\Delta u \geq 0$ in Ω .
- b) Set $u_0 = 0$ and let $u_1 \in C^2(\overline{\Omega})$ solve

$$\Delta u_1 = h(u_0) = h(0)$$
 in Ω ,
 $u_1 = 0$ on $\partial \Omega$.

Show that $u_1 \leq 0$ in Ω .

c) Let $u_2 \in C^2(\overline{\Omega})$ solve

$$\Delta u_2 = h(u_1(x))$$
 in Ω
 $u_2 = 0$ on $\partial \Omega$.

Show that $u_2 \leq u_1$

in Ω .

d) Find a function $v \subset C^2(\overline{\Omega})$ so that

$$\begin{array}{ll} \Delta v \geq 2 & \text{in } \Omega \\ v \leq 0 & \text{on } \overline{\Omega} \end{array}$$

and show that $v \leq u_2$ in Ω .

4. (20 pts) Let
$$f(x,t) \in C^2(\mathbb{R}^n \times [0,\infty))$$
 such that $f(x,t) = 0$ if $|x| \geq 4$. Let $u(x,t)$ solve

$$u_t - \Delta u = f(x, t) \text{ for } (x, t) \in \mathbb{R}^n \times (0, \infty),$$

 $u(x, 0) = 0 \qquad \text{for } x \in \mathbb{R}^n.$

- a) Use Duhamel's principle to derive a representation for a solution u(x,t).
- b) Use the representation to show:

$$\sup_{x \in \mathbb{R}^n} |u(x,t)| \le \int_0^t \sup_{x \in \mathbb{R}^n} |f(x,\tau)| d\tau,$$

5. (15 pts) A bounded function u(x,t) is a weak solution to

$$(5.1) u_t + 2uu_x = 0 in \mathbb{R}^2$$

if
$$\iint_{\mathbb{R}^2} (u\varphi_t + u^2 \ \varphi_x) \ dxdt = 0 \qquad \text{ for all } \varphi \in C^1_c(\mathbb{R}^2).$$

a) For $c \in \mathbb{R}$ define $v_c(x,t)$ by

$$v_c(x,t) = 2$$
 if $x < ct$,
= 0 if $x > ct$.

Determine c so that v_c is a weak solution to (5.1).

b) Use the method of characteristics to find a classical solution to

$$u_t + 2uu_x = 0$$
 $x \in \mathbb{R}, \ 0 < t < \overline{T},$
 $u(x,0) = -x$ $x \in \mathbb{R}$

for some \overline{T} . Find the maximum value of \overline{T} possible.