MA 52300 QUALIFYING EXAMINATION August 2018 (Professors Phillips and Wang)

1. (15 pt.) Let $u \in C^2(\mathbb{R}^n)$ such that

i)
$$u \ge 0$$
 on \mathbb{R}^n ,

ii)
$$\Delta u = 1$$
 on \mathbb{R}^n .

Prove for each ball $B(p,r) \subset \mathbb{R}^n$ that $\sup_{x \in \overline{B}(p,r)} u(x) \geq \frac{r^2}{2n}$.

Problem 1 more space

- 2. (15 pt.) Let $f \in C_c^2(B(o,1))$ where $B(o,1) \subset \mathbb{R}^3$. Set $w(x) = \Gamma * f(x)$ where $\Gamma(x)$ is the fundamental solution for the Laplacian in \mathbb{R}^3 .
 - a) Estimate w(x) to prove that there is a $C < \infty$ so that

$$|w(x)| \le \frac{C}{|x|}$$
 for $|x| \ge 2$.

b) If in addition we have

$$\int\limits_{B(o,1)} f(x)dx = 0$$

prove that there is $C_1 < \infty$ so that

$$|w(x)| \le \frac{C_1}{|x|^2}$$
 for $|x| \ge 2$.

Problem 2 more space

3. (30 pt.) Consider the three problems:

i)

$$u_{tt} - u_{xx} = 0,$$

 $u(x, 0) = 1,$
 $u_t(x, 0) = \sin x.$

ii)

$$u_t - u_{xx} = 0,$$

$$u(x, 0) = 1,$$

$$u_t(x, 0) = \sin x.$$

iii)

$$u_{tt} + u_{xx} = 0,$$

 $u(x, 0) = 1,$
 $u_t(x, 0) = \sin x.$

a) Determine for each of the three problems if there is a bounded solution $u(x,t) \in C^2(\mathbb{R}^2_+)$ where $\mathbb{R}^2_+ = \{(x,t) | x \in \mathbb{R}, t \geq 0\}$. Justify your answers.

Problem 3 continued.

b) Determine for each of the problems if there is a local solution $u(x,t) \in C^2(B_+(o,\varepsilon))$ for some $\varepsilon > 0$ where

$$B_{+}(o,\varepsilon) = \{(x,t) | x^{2} + t^{2} < \varepsilon^{2}, t \geq 0\}.$$

4. (20 pt.)

a) Given $\tilde{f}(x,t), \tilde{g}(x), \tilde{h}(x)$ for $x \in \mathbb{R}$ and t > 0 write down the representation for the solution to

$$\tilde{u}_{tt} - \tilde{u}_{xx} = \tilde{f}(x,t) \qquad x \in \mathbb{R}, \quad t > 0,$$
 $\tilde{u}(x,0) = \tilde{g}(x) \qquad x \in \mathbb{R},$
 $\tilde{u}_t(x,0) = \tilde{h}(x) \qquad x \in \mathbb{R}.$

Problem 4 continued.

b) Let

$$E = \{(x, t) | 0 \le x < \infty, 0 \le t < \infty\}.$$

Given

$$f \in C^{1}(E),$$

$$g \in C^{2}([0, \infty)),$$

$$h \in C^{1}([0, \infty))$$

such that g(0) = h(0) = 0 and f(0, t) = 0 for $t \ge 0$ solve

$$u_{tt} - u_{xx} = f$$
 for $x > 0$ and $t > 0$,
 $u(0,t) = 0$ for $t > 0$,
 $u(x,0) = g(x)$ for $x \ge 0$,
 $u_t(x,0) = h(x)$ for $x \ge 0$

by extending f, g and h for x < 0 and using a).

5. (20 pt.) Solve

$$2xyu_x + u_y = u^{1/2}$$
 for $(x, y) \in U \subset \mathbb{R}^2$, $u(x, 0) = x^2$ for $x > 0$.

where U is a neighborhood of the positive x axis.

Problem 5 more space