MA 52300 QUALIFYING EXAMINATION August 2019 (Professors Bauman and Phillips)

Instructions: This exam contains five problems. Show your reasoning in all problems.

1. (20 pt.) Assume f is a continuous real-valued function on \mathbb{R} and f is uniformly bounded on \mathbb{R} , i.e.

$$|f(x)| \leq M$$
 for all $x \in \mathbb{R}$

where M > 0. Assume u(x,t) is a bounded continuous function on $\mathbb{R} \times [0,\infty)$ with u_t, u_x, u_{xx} continuous on $\mathbb{R} \times (0,\infty)$, satisfying

$$u_t - u_{xx} = 0 \quad \text{in } \mathbb{R} \times (0, \infty),$$

$$u(x, t) = f(x) \quad \text{for } x \in \mathbb{R}.$$

a) State a formula for u(x,t) in terms of an integral over \mathbb{R} .

b) Prove that if $f(x) \to 0$ as $|x| \to \infty$, then for each fixed t > 0, $\lim_{|x|\to\infty} u(x,t) = 0$ uniformly for $x \in \mathbb{R}$.

Problem 1 more space

2. (20 pt.) Given that $\frac{1}{2\pi} \ln |x|$ for $x = (x_1, x_2)$ is the fundamental solution for the Laplacian in \mathbb{R}^2 , find the Green's function G(x, y) for the region $D = \{x = (x_1, x_2) \in \mathbb{R}^2 : x_1 > 0\}.$

Problem 2 more space

- **3.** (20 pt.) Let Ω be an open connected set in \mathbb{R}^n for $n \ge 2$. Assume $u \in C^2(\Omega)$ and $\Delta u \ge 0$ in Ω .
 - a) For any open ball $B_R(x_0)$ in \mathbb{R}^n such that $\overline{B_R(x_0)} \subset \Omega$, prove that

$$u(x_0) \le \oint_{\partial B_R(x_0)} u \, dS$$

where dS denotes surface measure.

(Hint: Use the divergence theorem and $0 \leq \int_{B_r(x_0)} (\Delta u) dx$ for all $0 < r \leq R$.)

b) Assume that $u \leq 0$ on Ω . Prove that if $u(\overline{x}) = 0$ for some \overline{x} in Ω , then $u \equiv 0$ in Ω .

Problem 3 more space.

- 4. (20 pt.) Let $\mathbb{R}^2_+ = \{(x,t) : x \in \mathbb{R}, t > 0\}$. Assume $g \in C^2(\mathbb{R})$ and $h \in C^1(\mathbb{R})$. Assume that f = f(x,t) and f, f_x, f_{xx} , and f_t are continuous on $\overline{\mathbb{R}^2_+}$. Let $u(x,t) \in C^2(\overline{\mathbb{R}^2_+})$ satisfy:
 - (i) $u_{tt} u_{xx} = f(x,t)$ for all $(x,t) \in \mathbb{R}^2_+$, (ii) $u(x,0) = g(x), u_t(x,0) = h(x)$ for all $x \in \mathbb{R}$.

a) State a formula for u(x,t) in terms of g, h, and f.

b) Let h(x) = g(x) = 0 for all $x \in \mathbb{R}$. Let f(x, t) be the function defined on $\overline{\mathbb{R}^2_+}$ such that f(x, t) = 1 on the rectangle

$$R = \{(x,t) : -1 \le x \le 1, \ 0 \le t \le 1\}$$

and f = 0 at all other points in $\overline{\mathbb{R}^2_+}$. It is known that in this case, the formula for the solution u(x,t) of problem (i) and (ii) is still valid. (It gives a weak solution that is continuous on $\overline{\mathbb{R}^2_+}$.)

Find all values of x (if any) such that u(x, 10) = 0; also find all values of x (if any) such that u(x, 10) = 1. Use the formula for u(x, t) to give a rigorous proof that your answer is correct.

Problem 4 more space.

5. (20 pt.) Consider the solution u(x, y) of:

$$u_x + uu_y = 1$$

defined for all (x, y) in some open set in \mathbb{R}^2 containing the half-line $L = \{(x, 0) : x > 0\}$ such that

$$u(x,0) = e^x$$
 for $x > 0$.

a) Find the integral curves (x(s,t), y(s,t), z(s,t)) satisfying

$$x(0,t) = t, \ y(0,t) = 0, \ z(0,t) = e^{t}$$

corresponding to the solution.

b) Compute u_{yy} on L.

Problem 5 more space