MA 52300 QUALIFYING EXAMINATION August 2019 (Professors Bauman and Phillips)

Instructions: This exam contains five problems. Show your reasoning in all problems.

1. (20 pt.) Assume f is a continuous real-valued function on \mathbb{R} and f is uniformly bounded on \mathbb{R}, i.e.

$$
|f(x)| \leq M \text { for all } x \in \mathbb{R}
$$

where $M>0$. Assume $u(x, t)$ is a bounded continuous function on $\mathbb{R} \times[0, \infty)$ with $u_{t}, u_{x}, u_{x x}$ continuous on $\mathbb{R} \times(0, \infty)$, satisfying

$$
\begin{aligned}
u_{t}-u_{x x} & =0 \quad \text { in } \mathbb{R} \times(0, \infty), \\
u(x, t) & =f(x) \quad \text { for } x \in \mathbb{R}
\end{aligned}
$$

a) State a formula for $u(x, t)$ in terms of an integral over \mathbb{R}.
b) Prove that if $f(x) \rightarrow 0$ as $|x| \rightarrow \infty$, then for each fixed $t>0, \lim _{|x| \rightarrow \infty} u(x, t)=0$ uniformly for $x \in \mathbb{R}$.

Problem 1 more space
2. (20 pt.) Given that $\frac{1}{2 \pi} \ln |x|$ for $x=\left(x_{1}, x_{2}\right)$ is the fundamental solution for the Laplacian in \mathbb{R}^{2}, find the Green's function $G(x, y)$ for the region $D=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>0\right\}$.

Problem 2 more space
3. (20 pt.) Let Ω be an open connected set in \mathbb{R}^{n} for $n \geq 2$. Assume $u \in C^{2}(\Omega)$ and $\Delta u \geq 0$ in Ω.
a) For any open ball $B_{R}\left(x_{0}\right)$ in \mathbb{R}^{n} such that $\overline{B_{R}\left(x_{0}\right)} \subset \Omega$, prove that

$$
u\left(x_{0}\right) \leq \int_{\partial B_{R}\left(x_{0}\right)} u d S
$$

where $d S$ denotes surface measure.
(Hint: Use the divergence theorem and $0 \leq \int_{B_{r}\left(x_{0}\right)}(\Delta u) d x$ for all $0<r \leq R$.)
b) Assume that $u \leq 0$ on Ω. Prove that if $u(\bar{x})=0$ for some \bar{x} in Ω, then $u \equiv 0$ in Ω.

Problem 3 more space.
4. (20 pt.) Let $\mathbb{R}_{+}^{2}=\{(x, t): x \in \mathbb{R}, t>0\}$. Assume $g \in C^{2}(\mathbb{R})$ and $h \in C^{1}(\mathbb{R})$. Assume that $f=f(x, t)$ and $f, f_{x}, f_{x x}$, and f_{t} are continuous on $\overline{\mathbb{R}_{+}^{2}}$. Let $u(x, t) \in C^{2}\left(\overline{\mathbb{R}_{+}^{2}}\right)$ satisfy:
(i) $\quad u_{t t}-u_{x x}=f(x, t) \quad$ for all $(x, t) \in \mathbb{R}_{+}^{2}$,
(ii) $u(x, 0)=g(x), u_{t}(x, 0)=h(x) \quad$ for all $x \in \mathbb{R}$.
a) State a formula for $u(x, t)$ in terms of g, h, and f.
b) Let $h(x)=g(x)=0$ for all $x \in \mathbb{R}$. Let $f(x, t)$ be the function defined on $\overline{\mathbb{R}_{+}^{2}}$ such that $f(x, t)=1$ on the rectangle

$$
R=\{(x, t):-1 \leq x \leq 1,0 \leq t \leq 1\}
$$

and $f=0$ at all other points in $\overline{\mathbb{R}_{+}^{2}}$. It is known that in this case, the formula for the solution $u(x, t)$ of problem (i) and (ii) is still valid. (It gives a weak solution that is continuous on $\overline{\mathbb{R}_{+}^{2}}$.)
Find all values of x (if any) such that $u(x, 10)=0$; also find all values of x (if any) such that $u(x, 10)=1$. Use the formula for $u(x, t)$ to give a rigorous proof that your answer is correct.

Problem 4 more space.
5. (20 pt.) Consider the solution $u(x, y)$ of:

$$
u_{x}+u u_{y}=1
$$

defined for all (x, y) in some open set in \mathbb{R}^{2} containing the half-line $L=\{(x, 0): x>0\}$ such that

$$
u(x, 0)=e^{x} \text { for } x>0
$$

a) Find the integral curves $(x(s, t), y(s, t), z(s, t))$ satisfying

$$
x(0, t)=t, y(0, t)=0, z(0, t)=e^{t}
$$

corresponding to the solution.
b) Compute $u_{y y}$ on L.

Problem 5 more space

