MATH 530 Qualifying Exam

January 2020 (S. Bell and L. Lempert)

Each problem is worth 25 points

- 1. How many zeroes (counted with multiplicity) of the polynomial $10z^{10} + 25z^3 + 13z + 1$ fall outside the unit circle?
- **2.** Let C denote the unit circle parametrized in the counterclockwise sense.

Compute
$$\int_C \frac{z}{2z^2 + 5z + 1} dz$$

- **3.** Compute the residue of $\frac{e^{3z}}{1 \cos z}$ at z = 0.
- 4. What is the image of the upper half plane under the mapping $L(z) = \frac{z-a}{z-b}$ where a and b are real numbers with 0 < a < b? Explain.
- 5. In this problem, you will compute the real integral $I = \int_0^\infty \frac{\ln t}{t^3 + 1} dt$ by integrating the complex valued function $f(z) = \frac{\log z}{z^3 + 1}$ (where Log denotes the principal branch of the complex log function) around a closed contour γ consisting of the directed line segment L_1 going from the origin to the point R > 0, followed by the circular arc C_R parametrized by Re^{it} as t ranges from zero to $2\pi/3$, then the directed line segment L_2 from $Re^{i2\pi/3}$ to the origin.
 - a) Express the integral of f(z) along the line L_2 in terms of real integrals.
 - b) Show that the integral of f(z) along the circular part C_R of the curve tends to zero as $R \to \infty$.
 - c) Compute the residue of f at the point $e^{i\pi/3}$.
 - d) Explain how to use a-c to get a formula for I. (Do not simplify.)
- 6. Find a one-to-one conformal mapping of the open unit disc onto the first quadrant of the complex plane.
- 7. Suppose that u(x, y) is harmonic on a disc $\{z : |z| < R\}$ where R > 1. Let M denote the maximum of |u| on the unit circle. Prove that there is a real constant C > 0 that does not depend on u such that

$$\left|\frac{\partial u}{\partial x}(0,0)\right| \le CM.$$

8. Suppose the f(z) is an entire function such that there exist positive constants C and $R_0 > 1$ such that

$$|f(z)| \le C \ln |z| \qquad \text{if } |z| > R_0.$$

Prove that f must be constant.