QUALIFYING EXAM COVER SHEET

August 2022 Qualifying Exams

Points	_ / Max Possible_			Grade			
For grader use:							
EMMI (oncid one							
EXAM (circle one	530) 544	553	554				
ID #:(10 digit PUID)							
Instructions : These e your <u>PUID</u>	exams will be "blind-	graded"	so under	the stude	nt ID nun	nber <u>pleas</u>	se use

MATH 530 Qualifying Exam

August 2022 (S. Bell and L. Lempert)

Each problem is worth 20 points

1. Suppose that $\Omega \subset \mathbb{C}$ is a domain and H(t,s) is a twice continuously differentiable homotopy on $[0,1] \times [0,1]$ between two curves in Ω that start at A and end at B. Let γ_s denote the curve parametrized by $z_s(t) = H(t,s)$, $0 \le t \le 1$. Note that all the curves in this family are assumed to start at A and end at B. Hence, $H(0,s) \equiv A$ and $H(1,s) \equiv B$. Let f be an analytic function on Ω and define

$$I(s) = \int_{\gamma_s} f(z) \ dz.$$

Show that $I'(s) \equiv 0$ by completing the following steps. Write out the definition of the path integral in terms of an integral dt. Take the derivative in s under the integral sign

$$I'(s) = \frac{d}{ds} \int_0^1 \left[\cdots \right] dt = \int_0^1 \frac{\partial}{\partial s} \left[\cdots \right] dt,$$

notice that

$$\frac{\partial}{\partial s} \left[\right. \cdots \left. \right] = \frac{\partial}{\partial t} \left[\right. - - - \left. \right],$$

and evaluate the integral using elementary calculus. What important fact about f' needs to be known to make this proof work?

2. If f(z) is a continuous complex valued function on a neighborhood of a point a, show that

$$2\pi i f(a) = \lim_{\epsilon o 0} \int_{C_{\epsilon}(a)} rac{f(z)}{z - a} \; dz,$$

where $C_{\epsilon}(a)$ denotes the counterclockwise circle of radius ϵ about a.

- 3. Suppose that $\sum_{n=0}^{\infty} a_n z^n$ converges to an entire function h(z), and that each a_n is an integer. Prove that h must be a polynomial.
- 4. Find all points in the closed unit disc where $z^8 z^6$ assumes its maximum modulus. Explain.
- 5. Show that an analytic function f(z) that maps the unit disc into itself that is *not* one-to-one must be such that |f'(0)| < 1.
- 6. Prove that a real valued harmonic function on the whole complex plane that is everywhere positive must be a constant function.
- 7. Suppose that u is a non-constant real valued harmonic function on the complex plane such that u(0) = 0. Prove that there is at least one point on each circle centered at the origin where u vanishes.