
MA 530 Qualifier Exam, January 3, 2023

Each of the seven problems below is worth 5 points. In the problems D stands for the
unit disc D = {z ∈ C : |z| < 1}.

In your solutions make sure you justify your claims. Notes, books, cribsheets, and elec-
tronic devices are not allowed. Efforts to write neatly will be appreciated. The order of the
problems is alphabetical, and is not intended to indicate their levels of difficulty.
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where the path of integration is oriented counterclockwise.

2. For a natural number n, let Tn denote the polynomial
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Prove that there is an n0 such that Tn has exactly 6 roots in the disc {z ∈ C : |z| < 10}
when n > n0.

3. If cos z = cosw for some complex numbers z, w, prove that there is an integer k such
that z = w + 2kπi or z = −w + 2kπi.

4. Is there a harmonic function u : D → R such that limz→ζ u(z) = ∞ for every ζ ∈ ∂D?

5. Let Q = {z ∈ C : Rez, Imz > 0} stand for the first quadrant. Find a biholomorphic
map F : Q → Q such that F (2+i) = 1+2i. (Recall that a biholomorphic map is a surjective
holomorphic map with a holomorphic inverse.)

6. Suppose g is a holomorphic function on some domain, and 1/ḡ is also holomorphic
there. Prove that g is constant.

7. Suppose U ⊂ C is an open set and hj : U → D are holomorphic functions, j ∈ N,
that converge as j → ∞ at each point of a certain subset A ⊂ U . Prove that there is a
holomorphic function h : U → C such that limj→∞ hj = h on A.


