MA 530 Qualifying Exam August 2023

Each problem is worth 10 points. Justify your answers.

- 1. Let f be an unbounded entire function and $\Omega \subset \mathbb{C}$ a nonempty open set. Show that there exists $p \in \mathbb{C}$ such that $f(p) \in \Omega$.
- 2. Let $u: \mathbb{C} \to \mathbb{R}$ be a harmonic function. Prove that u is either surjective or constant.
- 3. Find all entire functions f such that $|f(z)| \leq |z|$ for all z and f(i) = 1.
- 4. Evaluate

$$\int_{\gamma} f(z) dz,$$

where $f(z) = \tan((1+i)z)$, and γ is the circle |z| = 2, oriented clockwise.

- 5. Let $\Omega = \mathbb{C} \setminus \{z \in \mathbb{R} : z \leq 0\}$. Find a bijective holomorphic function $f : \Omega \to \Omega$ such that f(1) = i.
- 6. Let $f(z) = z^{1000} + z^{100} + z^{10} + 1$. Find an R > 0 such that if f(z) = 0 then R < |z| < R + 1.
- 7. Let $\Omega \subset \mathbb{C}$ be a nonempty open set, and let $f: \Omega \to \mathbb{C}$ be holomorphic. Suppose that for every $z \in \Omega$ there is a positive integer n such that $f^{(n!)}(z) = 0$. Prove that f is a polynomial.