MATH 530 Qualifying Exam

August 2025, G. Buzzard, S. Bell (Each problem is worth 20 points.)

1. Determine all points $z \in \mathbb{C}$ such that

$$|\cos z|^2 + |\sin z|^2 \le 1.$$

2. Let R > 0 and let f be holomorphic in the disk $D_R = \{z : |z| < R\}$. Define $A : [0, R) \to \mathbb{R}$ as the sup of Re(f) over the circle of radius r:

$$A(r) = \sup \{ \operatorname{Re}(f(z)) : |z| = r \}.$$

Show that if f is nonconstant, then A is strictly increasing on [0, R).

3. Let $a \in (0,1)$. Evaluate $\int_0^\infty \frac{x^{-a}}{1+x} dx$ as a function of a.

4. Let \mathcal{F} be the set of functions, f, holomorphic in a neighborhood of the unit disk such that

$$\int_0^{2\pi} |f(e^{it})|^2 dt \le 1.$$

Prove that \mathcal{F} is a normal family in the unit disk: that is, for every sequence $\{f_n\}_{n=1}^{\infty}$ with each $f_n \in \mathcal{F}$, there is a subsequence $\{f_{n_k}\}_{k=1}^{\infty}$ that converges uniformly on compact subsets of the unit disk to a function f. The function f is not required to be in \mathcal{F} .

Hint: you may use the Cauchy-Schwarz inequality in the form that if g_1, g_2 are continuous functions on the boundary of the unit disk and $\|g_j\| := \left(\int_0^{2\pi} |g_j(e^{it})|^2 dt\right)^{1/2} < \infty$, then $\int_0^{2\pi} |g_1(e^{it})g_2(e^{it})| dt \leq \|g_1\| \|g_2\|$.

5. Let $D \subset \mathbb{C}$ be open and connected, let f_n be holomorphic in D for each positive integer n, and suppose f_n converges to f uniformly on D as $n \to \infty$. Suppose also there exists $z_0 \in D$ such that $f(z_0) = 0$ but that f is not identically 0. Prove that there exists n such that f_n has a zero in D.

6. Let f be holomorphic in the punctured unit disk $\mathbb{D}\setminus\{0\}$, let $r\in(0,1)$, and define $\gamma(t)=re^{it}$ for $t\in[0,2\pi]$. Define $c=\frac{1}{2\pi i}\int_{\gamma}f(z)dz$, and let $h(z)=f(z)-\frac{c}{z}$. Prove that h has a holomorphic anti-derivative in $\mathbb{D}\setminus\{0\}$. That is, there exists H holomorphic in $\mathbb{D}\setminus\{0\}$ such that H'=h.