QUALIFYING EXAMINATION JANUARY 2001 MATH 544 - Prof. Zink

1. (a) Let $\pi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by

 $\pi(x,y)=x,\quad \forall (x,y)\in \mathbb{R}\times \mathbb{R}.$

Show that $\pi(G)$ is open if G is an open subset of $\mathbb{R} \times \mathbb{R}$.

(b) Prove or disprove: If π is the projection mapping defined above, and if F is a closed subset of $\mathbb{R} \times \mathbb{R}$, then $\pi(F)$ is closed.

2. Let both f and g be functions of bounded variation on the closed, bounded interval [a, b]. Prove that fg is also of bounded variation on [a, b].

3. Consider the following proposition:

"Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of continuous functions on \mathbb{R} which converges at each point of \mathbb{Q} , the set of all rational numbers. If $\mathcal{F} = \{f_n : n \in \mathbb{N}\}$ is equicontinuous, then the sequence converges at every point of \mathbb{R} , and the convergence is uniform."

Prove the part that is true, and if there is some portion of the assertion that is false, provide a counterexample.

4. Let g be a real-valued, continuous function on the (finite) interval [a, b]. Definition: If $x \in [a, b]$ and if there exists an element $y \in [a, b]$ such that x < y and g(x) < g(y), then x is a POINT OF ASCENT for g.

Prove the following theorem (due to F. Riesz).

Let $g : [a,b] \to \mathbb{R}$ be continuous, and let A be the set of all points of ascent for g. Then A is an (relatively) open subset of [a,b], and for each of the component (relatively) open intervals of A, (a_k, b_k) (or, perhaps, $[a, b_k)$), $g(a_k) \leq g(b_k)$. 5. Let μ be the Lebesgue measure on the Lebesque measurable subsets of [0, 1], let f be a Lebesgue integrable function, and let

 $\varphi: [1, +\infty) \to \overline{\mathbb{R}} \quad (\text{where } \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\})$

be given by $\varphi(p) = ||f||_p$, for all $p \in [1, +\infty)$.

Show that φ is monotonically increasing.

6. Let (X, \mathcal{S}, μ) be a measure space, and let $\{f_n\}_{n=1}^{\infty}$ be a sequence of nonnegative, measurable (\mathcal{S}) functions on X that converges a.e. to **0**. Prove the following:

If there exists a real number M such that

$$\int \sup\{f_1, \cdots, f_n\} d\mu \leq M, \quad \forall n \in \mathbb{N},$$

then

$$\lim_n \int f_n d\mu = 0.$$

7. Let E be a Lebesgue measurable subset of [0, 1], and let μ be the Lebesgue measure. Demonstrate the existence of a point $t \in (0, 1)$ such that

$$\mu(\{x : x \in E \text{ and } x < t\}) = \frac{1}{2}\mu(E).$$