QUALIFYING EXAM COVER SHEET

January 2019 Qualifying Exams

Points	/ Max Possible			Grade					
For grader use:									
EXAM (circle one	e) 514	519	523	530	544	553	554	562	571
ID #:(10 d	igit PUID)	··· <u></u>	_						
ID #:									
Instructions: These your PUID	exams will be	"blind-	graded'	'so und	der the st	udent I	D numl	oer <u>pleas</u>	se use

MATH 544 QUALIFYING EXAMINATION January 2019

Student Identifier:	 	

(PLEASE PRINT CLEARLY)

Instructions: There are a total of 6 problems in this exam. A problem appears on each of the following pages. Problems are worth **20 points** each. Use the space provided for the solutions, using back pages as needed.

Problem 1 (20–pts) Let (X, \mathcal{F}, μ) be a σ -finite measure space. Let f and g be nonnegative measurable functions with the property that

$$\mu\{x\in X:g(x)>\lambda\}\leq \int_{\{x\in X:f(x)>\lambda\}}f(x)d\mu,$$

for all $\lambda > 0$. Prove that $\int_X g^p d\mu \le \int_X f^{p+1} d\mu$, for every 0 .

Problem 2 (20-pts) Consider [0,1] with its Lebesgue measure m. Suppose $\{f_k\}$ is a sequence of continuous functions on [0,1] such that $f_k \to f$ uniformly on [0,1] and $m\{x: f_k(x) < 0\} \to 0$, as $k \to \infty$. Prove that $f \ge 0$

Problem 3 (20-pts). Let (X, \mathcal{F}, μ) be a measure space and let $\{f_n\}$ be a Cauchy sequence in $L^1(\mu)$. Prove that for all $\varepsilon > 0$ there is a $\delta > 0$ such that for all n,

$$\int_{E} |f_n| d\mu < \varepsilon,$$

whenever $\mu(E) < \delta$.

Problem 4 (20-pts). Suppose $\{f_n\}$ is a sequence of Lebesgue measurable functions on [0,1] with the property that every subsequence $\{f_{n_k}\}$ has a further subsequence $\{f_{n_{k_j}}\}$ such that $f_{n_{k_j}}(x) \to 1$, as $j \to \infty$, for each $x \in [0,1]$. Prove that if $|f_n(x)| \le g(x)$, where $g \in L^1[0,1]$, then $f_n \to 1$ in $L^1[0,1]$, as $n \to \infty$.

Problem 5 (20–pts). Let m denote the Lebesgue measure. Let $\alpha > 1$. Prove that there exist $I_k \subset [0,1]$ such that if $\Omega = \bigcup_{k=1}^{\infty} I_k$, then

$$u(t) = \int_0^t \chi_\Omega dm > 0$$

for all t > 0 and

$$\frac{u(t)}{t^{\alpha}} \to 0$$

as $t \to 0^+$. Show that $u' = \chi_{\{u' \neq 0\}}$.

Problem 6 (20–pts) Let $\beta > 1$. Prove that the limit

$$\lim_{k\to\infty}\int_0^k (1+\frac{x}{k})^k e^{-\beta x} dx$$

exists and find it. Justify all your steps.