January 2025 Math 544 Qualifying Exam

Instructions

- (i) Since the exams will be graded blindly, please write your 10 digit PUID number: _____
- (ii) There are two blank pages for each problem and additional scratch paper if you need it.
- (iii) You have two hours to complete the exam. Good luck!

1. Let (X, \mathcal{M}, μ) be a measure space, and suppose $f: X \to \mathbb{R}$ satisfies

$$f^{-1}((r,\infty)) \in \mathcal{M}$$

for all $r \in \mathbb{Q}$. Prove that f is measurable.

2. Let $n \in \mathbb{N}$ be given, and suppose that $f: \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz; that is, there exists C such that

$$|f(x) - f(y)| \le C|x - y|$$

for all $x, y \in \mathbb{R}^n$ (with $|\cdot|$ denoting the usual Euclidean norm). Prove that if $E \subset \mathbb{R}^n$ has measure zero, then $f(E) \subset \mathbb{R}^n$ has measure zero.

3. Consider the Banach space $L^2([0,1])$ with the usual Lebesgue σ -algebra and measure. Let $K:[0,1]\times[0,1]\to\mathbb{R}$ be uniformly continuous. For $f\in L^2([0,1])$, define the function $Tf:[0,1]\to\mathbb{R}$ by

$$Tf(x) = \int_0^1 K(x, y) f(y) \, dy.$$

Suppose that $\{f_n\}_{n\in\mathbb{N}}\subset L^2([0,1])$ is a family of functions such that $\sup_{n\in\mathbb{N}}\|f_n\|_{L^2([0,1])}<\infty$. Prove that there is a subsequence of the family $\{Tf_n\}_{n\in\mathbb{N}}$ which converges uniformly on [0,1].

		7

4. Assume that $A \subset [0,1]$ is a Lebesgue-measurable set such that

$$0 < m(A \cap I) < m(I)$$

for every interval $I \subset [0,1]$. (You do not have to construct such a set). Let $F(x) := m(A \cap [0,x])$. Prove that F(x) is strictly increasing, absolutely continuous, but that F'(x) = 0 on a set of positive measure. (Hint: Use the Lebesgue differentiation theorem.)

- 5. Let (X, \mathcal{M}, μ) be a finite measure space and $f, \{f_n\}_{n \in \mathbb{N}}$ be measurable complex-valued functions. Prove that the following are equivalent.
 - (i) f_n converges to f in measure.
 - (ii) For all subsequences $\{f_{n_k}\}_{k\in\mathbb{N}}$, there exists a further subsequence $\{f_{n_{k_j}}\}_{j\in\mathbb{N}}$ which converges almost uniformly.

6. Let (X, \mathcal{M}, μ) be a given measure space. Assume $\{f_k\}_{k\in\mathbb{N}}$ is an increasing sequence of measurable functions, $g\in L^1(\mu)$, and $f_k\geq g$ μ almost everywhere for all $k\in\mathbb{N}$. Prove that

$$\int_X f_k \, \mathrm{d}\mu := \int_{\{x \in X : f_k(x) > 0\}} f_k \, \mathrm{d}\mu - \int_{\{x \in X : f_k(x) < 0\}} -f_k \, \mathrm{d}\mu$$

belongs to $(-\infty, \infty]$ for each k and that

$$\lim_{k\to\infty} \int_X f_k \,\mathrm{d}\mu = \int_X \lim_{k\to\infty} f_k \,\mathrm{d}\mu \,.$$