Math 553

Each problem 1-4 is worth 25 points. The points for individual parts are indicated by [-]. In working any part of a problem you may assume you have done the preceding parts.

1. [6] (a) In the group of symmetries of a regular hexagon (a group of order 12), how many elements are there of order 2? Of order 4? Of order 6?

[5] (b) Show that the multiplicative group generated by the complex matrices

$$\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$
 and $\begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}$ $(i^2 = -1, \ \omega^3 = 1, \ \omega \neq 1).$

has order 12, and that it contains elements of orders 4 and 6.

[6] (c) (i) Prove that in the symmetric group S_4 the centralizer of a 3-cycle has order 3.

(ii) For a 3-cycle $c \in S_4$, how many distinct elements are there of the form aca^{-1} with a in the alternating group A_4 . Why?

(iii) Prove that A_4 has no subgroup of order 6.

[8] (d) Altogether, how many different isomorphism classes are there of abelian groups of order 1200?

2. [6] (a) Show that a simple group which has a subgroup of index n > 2 is isomorphic to a subgroup of the alternating group A_n .

- [4] (b) What is the smallest index $[A_n:G]$ occurring for a subgroup $G \subsetneq A_n$? (Explain.)
- [5] (c) Show that there is no simple group of order 112.
- [5] (d) Show that there is no simple group of order 120.<u>Hint</u>: Consider the normalizer of a Sylow 5-subgroup.
- [5] (e) Is every group of order 120 solvable?

3. Let $\omega := (1 + \sqrt{-7})/2$.

- [9] (a) Show that $\mathbb{Z}[\omega]$ is a euclidean domain.
- [6] (b) Prove that 2 and 7 are not prime in $\mathbb{Z}[\omega]$.

[6] (c) Let $p \neq 7$ be an odd positive prime in \mathbb{Z} , let ζ be a primitive 7-th root of unity over the finite field $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$, and set $\xi := \zeta + \zeta^2 + \zeta^4$. Show that $(2\xi + 1)^2 = -7$, and that

-7 is a square in $\mathbb{F}_p \iff \xi^p = \xi \iff p \equiv 1, 2, \text{ or } 4 \pmod{7}$.

[4] (d) With p as in (c), show that p is prime in $\mathbb{Z}[\omega] \iff p \equiv 3, 5, \text{ or } 6 \pmod{7}$.

4. For any integer n, set $c_n := 2\cos(2\pi n/7)$.

[7] (a) Find the minimal polynomial of c_1 over the rational field \mathbb{Q} , and determine its galois group. (Justify your answer.)

<u>Hint</u>: If $\zeta = e^{2\pi i/7}$ then $c_1 = \zeta + 1/\zeta$, and $\zeta^3 + \zeta^2 + \zeta + 1 + 1/\zeta + 1/\zeta^2 + 1/\zeta^3 = 0$.

[3] (b) Choose complex numbers s_1 and s_2 such that $s_i^2 = c_i$ (i = 1, 2), and set $s_3 := 1/(s_1s_2)$. Show that $s_3^2 = c_3$.

[5] (c) Show that every Q-conjugate of $s := s_1 + s_2 + s_3$ is of the form $\pm s_1 \pm s_2 \pm s_3$, with either one or three + signs.

[10] (d) Find the minimal polynomial of s over \mathbb{Q} , and determine its galois group.