QUALIFYING EXAMINATION AUGUST 2004 MATH 553 - Prof. Heinzer

Let \mathbb{Z} denote the ring of integers and $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ the fields of rational, real and complex numbers, respectively.

- (15) 1. Let $\overline{\mathbb{Q}}$ denote the algebraic closure of \mathbb{Q} in \mathbb{C} .
 - (i) Let $\operatorname{Aut}(\overline{\mathbb{Q}})$ denote the group of automorphisms of $\overline{\mathbb{Q}}$. Is the group $\operatorname{Aut}(\overline{\mathbb{Q}})$ finite or infinite? Justify your answer.

(ii) Is the group $Aut(\overline{\mathbb{Q}})$ abelian? Justify your answer.

(iii) Is the group $Aut(\mathbb{R})$ of automorphisms of \mathbb{R} abelian? Justify your answer.

- (18) 1. (continued)
 - (iv) Prove the existence of a subfield K of $\overline{\mathbb{Q}}$ that is maximal with respect to $\sqrt[3]{2} \notin K$.

(v) Prove the existence of subfields K_1 and K_2 of $\overline{\mathbb{Q}}$ each maximal with respect to not containing $\sqrt[3]{2}$ such that $[K_1(\sqrt[3]{2}):K_1] = 3$ and $[K_2(\sqrt[3]{2}):K_2] = 2$.

(vi) With K as in (iv), if L/K is a finite algebraic field extension, prove that L/K is cyclic and that either $[L:K] = 3^n$ or $[L:K] = 2^n$ for some $n \in \mathbb{N}$.

 $\mathbf{2}$

Recall that if R and S are rings, then R × S = {(r,s) | r ∈ R, s ∈ S} is a ring where addition and multiplication in R×S are defined componentwise.
2. Describe all the prime ideals of Z × Z.

(12) 3. Consider the polynomial ring $\mathbb{Z}[x]$.

(6)

(i) Define $\phi_1 : \mathbb{Z}[x] \to \mathbb{Z}$, by $\phi_1(f(x)) = f(1)$ for every $f(x) \in \mathbb{Z}[x]$. Give generator(s) for the ideal ker ϕ_1 .

(ii) Define $\phi_2 : \mathbb{Z}[x] \to \mathbb{Z}$, by $\phi(f(x)) = f(2)$ for every $f(x) \in \mathbb{Z}[x]$. Give generator(s) for the ideal ker ϕ_2 .

(iii) Define $\phi : \mathbb{Z}[x] \to \mathbb{Z} \times \mathbb{Z}$ by $\phi(f(x)) = (f(1), f(2))$ for every $f(x) \in \mathbb{Z}[x]$. Give generator(s) for the ideal ker ϕ .

(iv) Prove or disprove that ϕ is surjective.

- (18) 4. Let K/F be a finite separable algebraic field extension and let α ∈ K.
 (i) Define the norm N_{K/F}(α) of α from K to F.
 - (ii) Prove that $N_{K/F}(\alpha) \in F$.

- (iii) Define the trace $Tr_{K/F}(\alpha)$ of α from K to F.
- (iv) Prove that $Tr_{K/F}(\alpha) \in F$.

(v) For $K = \mathbb{Q}(\sqrt[3]{2})$, compute $N_{K/\mathbb{Q}}(\sqrt[3]{2})$ and $Tr_{K/\mathbb{Q}}(\sqrt[3]{2})$.

(vi) For $K = \mathbb{Q}(\sqrt[3]{2})$, compute $N_{K/\mathbb{Q}}(3)$ and $Tr_{K/\mathbb{Q}}(3)$.

(7) 5. True or false: If $f(x), g(x) \in \mathbb{Q}[x]$ are irreducible polynomials that have the same splitting field, then deg $f = \deg g$. Justify your answer.

(14) 6. (i) Give generators for each maximal ideal of the polynomial ring $\mathbb{Z}[x]$ that contains the ideal $(15, x^2 - 3)$.

(ii) Diagram the lattice of ideals of the polynomial ring $\mathbb{Z}[x]$ that contain the ideal $(15, x^2 - 3)$.

(6) 7. Suppose L/Q is a finite algebraic field extension with [L : Q] = 4. Is it possible that there exist exactly two subfields K₁ and K₂ of L for which [L : K_i] = 2? Justify your answer.

(6) 8. Suppose L/Q is a finite algebraic field extension with [L : Q] = 4. Is it possible that there does not exist a subfield K of L for which [L : K] = 2? Justify your answer.

- (16) 9. Let $\omega \in \mathbb{C}$ be a primitive 12-th root of unity. (i) What is $[\mathbb{Q}(\omega) : \mathbb{Q}]$?
 - (ii) List the distinct conjugates of $\omega + \omega^{-1}$ over \mathbb{Q} .

(iii) What is the group $\operatorname{Aut}(\mathbb{Q}(\omega + \omega^{-1})/\mathbb{Q})$? Is $\mathbb{Q}(\omega + \omega^{-1})$ Galois over \mathbb{Q} ?

(iv) Diagram the lattice of subfields of $\mathbb{Q}(\omega)$ giving generators for each.

- (12) 10. Let F be a field. For each nonconstant monic polynomial f = f(x) ∈ F[x], let x_f be an indeterminate. Consider the polynomial ring R = F[{x_f}], and let I be the ideal of R generated by the polynomials f(x_f), where f varies over all the nonconstant monic polynomials in F[x].
 - (i) Prove that $I \neq R$.

(ii) Prove that there exists an extension field K of F in which each nonconstant monic polynomial $f \in F[x]$ has a root.

(8) 11. Is Q(√2) the fixed field of an automorphism of Q, where Q is the algebraic closure of Q? Justify your answer.

- (16) 12. Let K/\mathbb{Q} be the splitting field of the polynomial $x^9 1 \in \mathbb{Q}[x]$.
 - (i) Diagram the lattice of subfields of K/\mathbb{Q} . For each subfield, give generators and list its degree over \mathbb{Q} .

(ii) Let $\alpha \in \mathbb{R}$ be a root of the polynomial $x^9 - 2 \in \mathbb{Q}[x]$ and let L be the Galois closure of $\mathbb{Q}(\alpha)/\mathbb{Q}$. What is $[L:\mathbb{Q}(\alpha)]$?

(iii) Diagram the lattice of subfields F of L that contain $\mathbb{Q}(\alpha)$. For each such field F, list $[F : \mathbb{Q}(\alpha)]$ and give a generator for F over $\mathbb{Q}(\alpha)$.

(7) 13. Suppose f(x) ∈ Q[x] is a monic polynomial of degree n and α₁,..., α_n ∈ C are the roots of f(x). Let G be the Galois group of f(x) over Q. Prove that f(x) is irreducible in Q[x] if and only if the action of G on {α₁,..., α_n} is transitive.

(7) 14. Let G act as a transitive permutation group on the finite set A with |A| > 1. Prove that there exists $g \in G$ such that $g(a) \neq a$ for all $a \in A$.

- (16) 15. Let R be an integral domain.
 - (i) Define R is a unique factorization domain (UFD).

(ii) Give an example of an integral domain that is not a UFD.

(iii) Assume that R is a subring of a UFD S and that every unit of S is contained in R. Also assume for all a and b in S, if $ab \in R$, then a and b are in R. Prove that R is a UFD.

(iv) If the polynomial ring R[x] is a UFD, prove that R is a UFD.

(8) 16. Let R be a commutative ring with identity 1 ≠ 0 and let f(x) and g(x) be polynomials in R[x]. Let c(f), c(g) denote the ideals of R generated by the coefficients of f(x), g(x), respectively. If c(f) = c(g) = R, prove that the ideal c(fg) generated by the coefficients of the product f(x)g(x) is also equal to R.

(8) 17. Assume that F is a field of characteristic zero and that K/F is an algebraic field extension. If each nonconstant polynomial in F[x] has at least one root in K, prove that K is algebraically closed.