QUALIFYING EXAMINATION AUGUST 2009 MA 553

- **1.** (13 points) Let G be a group such that G/Z(G) is Abelian, and let $H \neq \{e\}$ be a normal subgroup of G. Show that $H \cap Z(G) \neq \{e\}$. (Hint: Consider the commutator subgroup G' of G.)
- **2.** (15 points) Let G be a group of order 150. Show that G has a normal subgroup of order 25. (Hint: You may want to show that G has a normal subgroup of order 5 or 25.)
- **3.** (14 points) Show that up to isomorphism, there are at most three non-Abelian groups of order 70.
- 4. (14 points) Let R be a unique factorization domain with quotient field K, let $K \subset L$ be a field extension, and let α be an element of L that is algebraic over K. Consider the subring $R[\alpha]$ of L. Find an ideal I of the polynomial ring R[X] so that $R[\alpha] \cong R[X]/I$. (Hint: Consider the minimal polynomial of α over K.)
- 5. (15 points) Let k be a field of characteristic p > 0, and let $k \subset K$ be an algebraic field extension of finite inseparable degree.
 - (a) Show that there exists $e \in \mathbb{N}$ such that $kK^{p^n} = kK^{p^e}$ for every $n \ge e$.
 - (b) Show that the inseparable degree of $k \subset K$ is $[K : kK^{p^e}]$ for e as in (a).
- 6. (15 points) Let k be a field, let $f(X) \in k[X]$ be a separable polynomial of degree n whose Galois group is isomorphic to S_n , and let α be a root of f(X) in some algebraic closure \overline{k} .
 - (a) Show that f(X) is irreducible.
 - (b) Show that $\operatorname{Aut}_k(k(\alpha)) = {\operatorname{id}}$ if $n \ge 3$.
 - (c) Show that $\alpha^n \notin k$ if $n \ge 4$.
- 7. (14 points) Determine the Galois group (up to isomorphism) of the polynomial $f = X^4 4X^2 + 2$ over \mathbb{Q} . Find all intermediate fields between \mathbb{Q} and the splitting field of f over \mathbb{Q} .