MATH 553 QUALIFYING EXAM AUGUST 2011

Instructions: Give a complete solution to each problem. Be sure to show all your work. You may cite any result except the one you are asked to prove. If a result has a name, you may refer to it by name. Otherwise, be sure to indicate the content of the result. The exam is graded 0-200 points.

1. Let

$$G = GL_2(\mathbb{Z}/p\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}/p\mathbb{Z}, \text{ and } ad - bc \not\equiv 0 \pmod{p} \right\}.$$

- (a) (12 points) Find the order, |G|, of G.
- (b) (10 points) Show $N = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in \mathbb{Z}/p\mathbb{Z} \right\}$ is a Sylow p-subgroup of G.
- (c) (12 points) Find the number of Sylow p-subgroups of G.

2. (11 points each)

- (a) Let G be a group, H a subgroup of G with [G:H]=2. Suppose K is a subgroup of G of odd order. Show $K\subseteq H$.
- (b) Let G be a finite group and suppose there is a sequence of subgroups

$$G = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n = H,$$

- with $[G_i:G_{i+1}]=2$ for $i=1,2,\ldots n-1$. Suppose H has odd order. Show $H \triangleleft G$.
- (c) Suppose $|G| = 2^n m$, with m odd. Suppose G has a normal subgroup H of order m. Show there is a sequence of subgroups $G = G_0 \supset G_1 \supset \cdots \supset G_n = H$, with $[G_i : G_{i+1}] = 2$, for all i.
- 3. (12 points each) Let R be a commutative ring with identity $1 \neq 0$, and let I be an ideal of R. Define Jac I to be the intersection of all maximal ideals containing I, with the convention Jac R = R. Let $\sqrt{I} = \{r \in R | r^n \in I \text{ for some } n > 0\}$.
 - (a) Prove $\operatorname{Jac} I$ is an ideal of R containing I.
 - (b) Prove $\sqrt{I} \subseteq \operatorname{Jac} I$.
 - (c) Let F be a field, set R = F[x], and let I = (f(x)), for some **non-zero** $f(x) \in R$. Describe Jac I in this instance.

- **4.** Let S be the subring of $\mathbb{C}[x] \times \mathbb{C}[y]$ consisting of pairs (f,g) with f(0) = g(0).
 - (a) (12 points) Let $\varphi : \mathbb{C}[x,y] \to S$ be defined by $\varphi(h) = (f,g)$, where f(x) = h(x,0), and g(y) = g(0,y). Prove φ is a surjective homomorphism.
 - (b) (10 points) Prove $\mathbb{C}[x,y]/(xy) \simeq S$.
 - (c) (10 points) Use (b) to describe the prime ideals of S. Be sure to justify your
- 5. Let p be a prime. let $F = \mathbb{F}_p$ be the field of p elements and $K = \mathbb{F}_{p^{10}}$ be the unique extension of F with p^{10} elements.
 - (a) (8 points) Find all subfields of K. Make sure to justify your answer.
 - (b) (16 points) Find a formula for the number of monic irreducible polynomials of degree 10 in F[x]. Justify your answer.
- **6.** Let $f(x) = (x^2 3)(x^3 7) \in \mathbb{Q}[x]$. Let K be the splitting field of f(x) over \mathbb{Q} .
 - (a) (14 points) Find the degree of K over \mathbb{Q} .
 - (b) (16 points) Classify the Galois group $Gal(K/\mathbb{Q})$.
 - (c) (11 points) Find all subfields E of K so that E/\mathbb{Q} is a quadratic extension.