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1. (20) Let n > 1 be a positive integer and let p be a prime integer. Let ¢ : % — (% be the natural

surjective ring homomorphism.

(a) If p does not divide n and x is a unit in %, is every element in ¢ ~1(x) a unit in (p—zn)? Justify your

answer.

(b) If p divides n and « is a unit in %, is every element in ¢~1(z) a unit in %? Justify your answer.

(c) Prove that ¢ maps the units of % surjectively onto the units of %,
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2. (13 pts) Does there exist an infinite abelian group G having the property that every proper subgroup
H of G is a finite group? Justify your answer by either describing an example of such a group G, or

explaining why such a group G does not exist.

3. (7 pts) Is every nonzero prime ideal of a unique factorization domain a maximal ideal? Justify your

answer.
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4. (12 pts) Let Q denote the field of rational numbers. Does there exist a field extension L of Q such that
[L : Q] = 4 and there exist precisely two subfields F; and Fy of L such that [F} : Q] = 2 = [Fy : Q]?

Justify your answer by either describing an example of such a field L, or explaining why such a field L

does not exist.

5. (8 pts) Does the symmetric group S5 contain a subgroup of order 157 Justify your answer.
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6. (10) Let R be an integral domain. If f(z) and g(x) are nonzero polynomials in the polynomial ring R[z],

prove that their product f(x)g(x) is a nonzero polynomial.

7. (10) Let R be an integral domain and let f =" a,2™ = ag + a1z + asz® + - -+ be an element of the
formal power series ring R[[z]]. State a necessary and sufficient condition for f to be a unit of R][[z]] and

justify your answer.
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8. (10) Let R be a commutative ring with 1 # 0 and let f(z) and g(x) be polynomials in R[x]. Let c(f)
and ¢(g) denote the ideals in R generated by the coefficients of f(x) and g(x), respectively. Assume that
¢(f) = R and ¢(g) = R. Prove or disprove that ¢(fg), the ideal in R generated by the coefficients of the

product f(x)g(x) is equal to R.

9. (10) How many maximal ideals of the polynomial ring Z[[z] contain the ideal (10, 2% —3)? Give generators

for each of these maximal ideals.
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10. Let G be a finite group and H a subgroup such that |G : H| = d with 1 < d < |G]|.

(a) (5 pts) Describe the natural homomorphism ¢ : G — Sy, where Sy is the permutation group on the

left cosets of H in G.

(b) (8 pts) If |G| = n and d is the smallest prime dividing n, prove that H is normal in G.

11. (7 pts) Let p and ¢ be distinct prime numbers. List up to isomorphism all abelian groups of order p3q2.
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12. (6 pts) State Zorn’s Lemma.

13. (14 pts) Let R be a commutative ring with 1 # 0. Assume that a € R is such that a™ # 0 for each

positive integer n, and let S = {a"},>0.

(i) Using Zorn’s Lemma, prove that there exists an ideal I of R such that I is maximal among ideals

of Rwith INS = (.

(ii) Prove that an ideal I as in item (i) is a prime ideal.
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14. Let K/Q be the splitting field of the polynomial 4 + 1 € Qlx].

(a) (4 pts) What is the degree [K : Q]?

(b) (6 pts) If v is one root of x*+1, diagram the lattice of fields between Q and Q(«), and give generators

for each intermediate field.

15. Let L/Q be the splitting field of the polynomial 2% — 2 € Q[z].

(a) (4 pts) What is the degree [L : Q]?

(b) (6 pts) If B is one root of 2% —2, diagram the lattice of fields between Q and Q(f3), and give generators

for each intermediate field.
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16. (10 pts) Let K/F be an algebraic field extension. If K = F(«) for some « € K, prove that there are only

finitely many subfields of K that contain F.

17. (10 pts) Prove or disprove that Q(+/2) is not a subfield of any cyclotomic field over Q.

10
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18. (10 pts) Let F be a field of characteristic p > 0 and let F'(x) denote the field of fractions of the polynomial
ring F[x]. Let Aut F(x) denote the group of automorphisms of the field F'(x), and let o € Aut F(z) be

such that o fixes F' and ox = 2 + 1. Let G = (o) be the cyclic subgroup of Aut F'(x) generated by o.

(a) What is the order of the group G?

(b) Give generators for the fixed field F(z)¢.

19. (10 pts) Do there exist Galois extensions K/Q and L/Q such that [K : Q] = 6 = [L : Q], but the Galois
groups Gal(K/Q) and Gal(L/Q) are not isomorphic? Justify your answer by either giving examples

where this holds or explaining why it is not possible.
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