FALL 2016

Qualifying Exam - MA 553

In answering any part of a question, you may assume the results in previous parts, even if you have not solved them. Be sure to provide all details of your work.

.....

- 1. Let p < q be prime numbers, and G be any group of order p^2q .
 - (a) (5 points) Show that the number n_q of Sylow q-subgroups in G is either 1 or p^2 .
 - (b) (5 points) Show that if $n_q = p^2$ then G contains a unique Sylow p-subgroup.
 - (c) (10 points) Show that G is solvable.

- 2. (20 points) Let $H \subset G$ be a normal subgroup of G. Suppose that P is a Sylow p- subgroup of H. Show that the following conditions are equivalent
 - (a) P is normal in G
 - (b) P is normal H

- 3. Let G be a group of order 66.
 - (a) (5 point) Show that G has a normal subgroup of order 11.
 - (b) (5 points) Show that G has a normal subgroup of order 33.
 - (c) (5 points) Show that G has an element of order 33.
 - (d) (5 points) Show that G cannot be embedded in S_{12} .

- 4. (20 points) Let (R, +,) be a commutative ring with $1 \neq 0$ and assume that $M \subset R$ is a maximal ideal. Show that the following conditions are equivalent:
 - (a) $x \notin M$.
 - (b) There exists $a \in R$ such that $1 + ax \in M$.

5. (20 points) Let R be a commutative ring with $1 \neq 0$ and let P be a prime ideal of R. Let I and J are ideals of R such that $I \cap J \subset P$, Prove that either $I \subseteq P$ or $J \subseteq P$.

- 6. (a) Prove that Z[x] is not PID.(10 pts).
 - (b) Show that $Z[x]/(x^2+5)$ is not UFD. (10 points).

- 7. Let L be the splitting field of a polynomial $f(x) \in F[x]$ of degree n over a field F.
 - (a) Show that $[L:F] \leq n!$ (10 points)
 - (b) Show that n divides [L:F] whenever f(x) is irreducible. (10 points)

- 8. Consider the polynomial $f(x) = (x^6 + 1)(x^4 + 1)(x^3 + x^2 + 1)$ over F_2 .
 - (a) (10 points) Find the splitting field L of f over F_2 .
 - (b) (5 points) Find the Galois group of ${\cal L}$, and its generators.
 - (c) (5 points) Describe all intermied iate fields $F_2\subseteq K\subseteq L.$

- 9. Let ϵ_n be a primitive n-th root of unity for some natural n.
 - (a) (5 points) Show that $Q(\epsilon_n)/Q$ is Galois.
 - (b) (5 points) Describe its Galois group.
 - (c) (10 points) Show that $Q(\epsilon_n)$ does not contain $\sqrt[3]{5}$.

- 10. Let L/Q be the splitting field of the polynomial $x^6 2 \in Q[x]$.
 - (a) (5 points) What is the degree [L:Q]?
 - (b) (5 points) What is the Galois group Gal(L/Q).
 - (c) (5 points) Give generators for each subfield K of L for which [K:Q]=2. How many K are there?
 - (d) (5 points) Find the number of the subfields K of L for which [K:Q]=4.